Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 47(6): 3184-3196, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30649417

RESUMEN

Co-translational protein targeting to membranes depends on the regulated interaction of two ribonucleoprotein particles (RNPs): the ribosome and the signal recognition particle (SRP). Human SRP is composed of an SRP RNA and six proteins with the SRP GTPase SRP54 forming the targeting complex with the heterodimeric SRP receptor (SRαß) at the endoplasmic reticulum membrane. While detailed structural and functional data are available especially for the bacterial homologs, the analysis of human SRP was impeded by the unavailability of recombinant SRP. Here, we describe the large-scale production of all human SRP components and the reconstitution of homogeneous SRP and SR complexes. Binding to human ribosomes is determined by microscale thermophoresis for individual components, assembly intermediates and entire SRP, and binding affinities are correlated with structural information available for all ribosomal contacts. We show that SRP RNA does not bind to the ribosome, while SRP binds with nanomolar affinity involving a two-step mechanism of the key-player SRP54. Ultrasensitive binding of SRP68/72 indicates avidity by multiple binding sites that are dominated by the C-terminus of SRP72. Our data extend the experimental basis to understand the mechanistic principles of co-translational targeting in mammals and may guide analyses of complex RNP-RNP interactions in general.


Asunto(s)
Ribosomas/genética , Partícula de Reconocimiento de Señal/genética , Sitios de Unión , Retículo Endoplásmico/genética , Humanos , Unión Proteica , Procesamiento Proteico-Postraduccional , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Péptidos/genética
2.
Nucleic Acids Res ; 45(1): 470-481, 2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-27899666

RESUMEN

Co-translational protein targeting and membrane protein insertion is a fundamental process and depends on the signal recognition particle (SRP). In mammals, SRP is composed of the SRP RNA crucial for SRP assembly and function and six proteins. The two largest proteins SRP68 and SRP72 form a heterodimer and bind to a regulatory site of the SRP RNA. Despite their essential roles in the SRP pathway, structural information has been available only for the SRP68 RNA-binding domain (RBD). Here we present the crystal structures of the SRP68 protein-binding domain (PBD) in complex with SRP72-PBD and of the SRP72-RBD bound to the SRP S domain (SRP RNA, SRP19 and SRP68) detailing all interactions of SRP72 within SRP. The SRP72-PBD is a tetratricopeptide repeat, which binds an extended linear motif of SRP68 with high affinity. The SRP72-RBD is a flexible peptide crawling along the 5e- and 5f-loops of SRP RNA. A conserved tryptophan inserts into the 5e-loop forming a novel type of RNA kink-turn stabilized by a potassium ion, which we define as K+-turn. In addition, SRP72-RBD remodels the 5f-loop involved in ribosome binding and visualizes SRP RNA plasticity. Docking of the S domain structure into cryo-electron microscopy density maps reveals multiple contact sites between SRP68/72 and the ribosome, and explains the role of SRP72 in the SRP pathway.


Asunto(s)
ARN/química , Proteínas Recombinantes de Fusión/química , Ribosomas/química , Partícula de Reconocimiento de Señal/química , Secuencia de Bases , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Potasio/química , Potasio/metabolismo , Dominios Proteicos , Multimerización de Proteína , Estructura Secundaria de Proteína , ARN/genética , ARN/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/metabolismo , Técnicas del Sistema de Dos Híbridos
3.
J Mol Biol ; 428(14): 2880-97, 2016 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-27241309

RESUMEN

The signal recognition particle (SRP) is a ribonucleoprotein complex with a key role in targeting and insertion of membrane proteins. The two SRP GTPases, SRP54 (Ffh in bacteria) and FtsY (SRα in eukaryotes), form the core of the targeting complex (TC) regulating the SRP cycle. The architecture of the TC and its stimulation by RNA has been described for the bacterial SRP system while this information is lacking for other domains of life. Here, we present the crystal structures of the GTPase heterodimers of archaeal (Sulfolobus solfataricus), eukaryotic (Homo sapiens), and chloroplast (Arabidopsis thaliana) SRP systems. The comprehensive structural comparison combined with Brownian dynamics simulations of TC formation allows for the description of the general blueprint and of specific adaptations of the quasi-symmetric heterodimer. Our work defines conserved external nucleotide-binding sites for SRP GTPase activation by RNA. Structural analyses of the GDP-bound, post-hydrolysis states reveal a conserved, magnesium-sensitive switch within the I-box. Overall, we provide a general model for SRP cycle regulation by RNA.


Asunto(s)
GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/metabolismo , Arabidopsis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión/fisiología , Dimerización , Humanos , Simulación de Dinámica Molecular , Unión Proteica/fisiología , Estructura Terciaria de Proteína , Sulfolobus solfataricus/metabolismo
4.
Science ; 344(6179): 101-4, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24700861

RESUMEN

The signal recognition particle (SRP) is central to membrane protein targeting; SRP RNA is essential for SRP assembly, elongation arrest, and activation of SRP guanosine triphosphatases. In eukaryotes, SRP function relies on the SRP68-SRP72 heterodimer. We present the crystal structures of the RNA-binding domain of SRP68 (SRP68-RBD) alone and in complex with SRP RNA and SRP19. SRP68-RBD is a tetratricopeptide-like module that binds to a RNA three-way junction, bends the RNA, and inserts an α-helical arginine-rich motif (ARM) into the major groove. The ARM opens the conserved 5f RNA loop, which in ribosome-bound SRP establishes a contact to ribosomal RNA. Our data provide the structural basis for eukaryote-specific, SRP68-driven RNA remodeling required for protein translocation.


Asunto(s)
Transporte de Proteínas , ARN Citoplasmático Pequeño/química , ARN Citoplasmático Pequeño/metabolismo , Partícula de Reconocimiento de Señal/química , Cristalografía por Rayos X , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Ribosomas , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/metabolismo
5.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 3): 295-303, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20179341

RESUMEN

The signal recognition particle (SRP) is a conserved ribonucleoprotein (RNP) complex that co-translationally targets membrane and secretory proteins to membranes. The assembly of the particle depends on the proper folding of the SRP RNA, which in mammalia and archaea involves an induced-fit mechanism within helices 6 and 8 in the S domain of SRP. The two helices are juxtaposed and clamped together upon binding of the SRP19 protein to their apices. In the current assembly paradigm, archaeal SRP19 causes the asymmetric loop of helix 8 to bulge out and expose the binding platform for the key player SRP54. Based on a heterologous archaeal SRP19-human SRP RNA structure, mammalian SRP19 was thought not to be able to induce this change, thus explaining the different requirements of SRP19 for SRP54 recruitment. In contrast, the crystal structures of a crenarchaeal and the all-human SRP19-SRP RNA binary complexes presented here show that the asymmetric loop is bulged out in both binary complexes. Differences in SRP assembly between mammalia and archaea are therefore independent of SRP19 and are based on differences in SRP RNA itself. A new SRP-assembly scheme is presented.


Asunto(s)
Proteínas Arqueales/química , Partícula de Reconocimiento de Señal/química , Sulfolobus solfataricus/química , Secuencia de Aminoácidos , Proteínas Arqueales/metabolismo , Secuencia de Bases , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , ARN/química , ARN/metabolismo , Alineación de Secuencia , Partícula de Reconocimiento de Señal/metabolismo , Sulfolobus solfataricus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...