Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Med Phys ; 51(2): 712-739, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38018710

RESUMEN

Currently, there are multiple breast dosimetry estimation methods for mammography and its variants in use throughout the world. This fact alone introduces uncertainty, since it is often impossible to distinguish which model is internally used by a specific imaging system. In addition, all current models are hampered by various limitations, in terms of overly simplified models of the breast and its composition, as well as simplistic models of the imaging system. Many of these simplifications were necessary, for the most part, due to the need to limit the computational cost of obtaining the required dose conversion coefficients decades ago, when these models were first implemented. With the advancements in computational power, and to address most of the known limitations of previous breast dosimetry methods, a new breast dosimetry method, based on new breast models, has been developed, implemented, and tested. This model, developed jointly by the American Association of Physicists in Medicine and the European Federation for Organizations of Medical Physics, is applicable to standard mammography, digital breast tomosynthesis, and their contrast-enhanced variants. In addition, it includes models of the breast in both the cranio-caudal and the medio-lateral oblique views. Special emphasis was placed on the breast and system models used being based on evidence, either by analysis of large sets of patient data or by performing measurements on imaging devices from a range of manufacturers. Due to the vast number of dose conversion coefficients resulting from the developed model, and the relative complexity of the calculations needed to apply it, a software program has been made available for download or online use, free of charge, to apply the developed breast dosimetry method. The program is available for download or it can be used directly online. A separate User's Guide is provided with the software.


Asunto(s)
Neoplasias de la Mama , Mama , Humanos , Femenino , Mama/diagnóstico por imagen , Mamografía/métodos , Radiometría/métodos , Método de Montecarlo , Neoplasias de la Mama/diagnóstico por imagen
3.
J Appl Clin Med Phys ; 23(12): e13777, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36125203

RESUMEN

Entry into the field of clinical medical physics is most commonly accomplished through the completion of a Commission on Accreditation of Medical Physics Educational Programs (CAMPEP)-accredited graduate and residency program. To allow a mechanism to bring valuable expertise from other disciplines into clinical practice in medical physics, an "alternative pathway" approach was also established. To ensure those trainees who have completed a doctoral degree in physics or a related discipline have the appropriate background and didactic training in medical physics, certificate programs and a CAMPEP-accreditation process for these programs were initiated. However, medical physics-specific didactic, research, and clinical exposure of those entering medical physics residencies from these certificate programs is often comparatively modest when evaluated against individuals holding Master's and/or Doctoral degrees in CAMPEP-accredited graduate programs. In 2016, the AAPM approved the formation of Task Group (TG) 298, "Alternative Pathway Candidate Education and Training." The TG was charged with reviewing previous published recommendations for alternative pathway candidates and developing recommendations on the appropriate education and training of these candidates. This manuscript is a summary of the AAPM TG 298 report.


Asunto(s)
Educación Médica , Internado y Residencia , Oncología por Radiación , Humanos , Física Sanitaria/educación , Competencia Clínica , Educación de Postgrado en Medicina
4.
Pediatr Radiol ; 52(3): 445-452, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34866159

RESUMEN

BACKGROUND: Radiation dose metrics vary by the calibration reference phantom used to report doses. By convention, 16-cm diameter cylindrical polymethyl-methacyrlate phantoms are used for head imaging and 32-cm diameter phantoms are used for body imaging in adults. Actual usage patterns in children remain under-documented. OBJECTIVE: This study uses the University of California San Francisco International CT Dose Registry to describe phantom selection in children by patient age, body region and scanner manufacturer, and the consequent impact on radiation doses. MATERIALS AND METHODS: For 106,837 pediatric computed tomography (CT) exams collected between Jan. 1, 2015, and Nov. 2, 2020, in children up to 17 years of age from 118 hospitals and imaging facilities, we describe reference phantom use patterns by body region, age and manufacturer, and median and 75th-percentile dose-length product (DLP) and volume CT dose index (CTDIvol) doses when using 16-cm vs. 32-cm phantoms. RESULTS: There was relatively consistent phantom selection by body region. Overall, 98.0% of brain and skull examinations referenced 16-cm phantoms, and 95.7% of chest, 94.4% of abdomen and 100% of cervical-spine examinations referenced 32-cm phantoms. Only GE deviated from this practice, reporting chest and abdomen scans using 16-cm phantoms with some frequency in children up to 10 years of age. DLP and CTDIvol values from 16-cm phantom-referenced scans were 2-3 times higher than 32-cm phantom-referenced scans. CONCLUSION: REFERENCE PHANTOM SELECTION IS HIGHLY CONSISTENT, WITH A SMALL BUT SIGNIFICANT NUMBER OF ABDOMEN AND CHEST SCANS (~5%) USING 16-CM PHANTOMS IN YOUNGER CHILDREN, WHICH PRODUCES DLP VALUES APPROXIMATELY TWICE AS HIGH AS EXAMS REFERENCED TO 32-CM PHANTOMS.


Asunto(s)
Tórax , Tomografía Computarizada por Rayos X , Adulto , Niño , Humanos , Fantasmas de Imagen , Dosis de Radiación , Sistema de Registros , Tomografía Computarizada por Rayos X/métodos
5.
Radiology ; 302(2): 380-389, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34751618

RESUMEN

Background Lack of standardization in CT protocol choice contributes to radiation dose variation. Purpose To create a framework to assess radiation doses within broad CT categories defined according to body region and clinical imaging indication and to cluster indications according to the dose required for sufficient image quality. Materials and Methods This was a retrospective study using Digital Imaging and Communications in Medicine metadata. CT examinations in adults from January 1, 2016 to December 31, 2019 from the University of California San Francisco International CT Dose Registry were grouped into 19 categories according to body region and required radiation dose levels. Five body regions had a single dose range (ie, extremities, neck, thoracolumbar spine, combined chest and abdomen, and combined thoracolumbar spine). Five additional regions were subdivided according to dose. Head, chest, cardiac, and abdomen each had low, routine, and high dose categories; combined head and neck had routine and high dose categories. For each category, the median and 75th percentile (ie, diagnostic reference level [DRL]) were determined for dose-length product, and the variation in dose within categories versus across categories was calculated and compared using an analysis of variance. Relative median and DRL (95% CI) doses comparing high dose versus low dose categories were calculated. Results Among 4.5 million examinations, the median and DRL doses varied approximately 10 times between categories compared with between indications within categories. For head, chest, abdomen, and cardiac (3 266 546 examinations [72%]), the relative median doses were higher in examinations assigned to the high dose categories than in examinations assigned to the low dose categories, suggesting the assignment of indications to the broad categories is valid (head, 3.4-fold higher [95% CI: 3.4, 3.5]; chest, 9.6 [95% CI: 9.3, 10.0]; abdomen, 2.4 [95% CI: 2.4, 2.5]; and cardiac, 18.1 [95% CI: 17.7, 18.6]). Results were similar for DRL doses (all P < .001). Conclusion Broad categories based on image quality requirements are a suitable framework for simplifying radiation dose assessment, according to expected variation between and within categories. © RSNA, 2021 See also the editorial by Mahesh in this issue.


Asunto(s)
Dosis de Radiación , Tomografía Computarizada por Rayos X , Adulto , Anciano , Femenino , Humanos , Masculino , Metadatos , Persona de Mediana Edad , Estudios Retrospectivos
6.
AJR Am J Roentgenol ; 216(2): 447-452, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32755177

RESUMEN

OBJECTIVE. The purpose of this study was to investigate whether systematic bias in attenuation measurements occurs among CT scanners made by four major manufacturers and the relevance of this bias regarding opportunistic screening for osteoporosis. MATERIALS AND METHODS. Data on attenuation measurement accuracy were acquired using the American College of Radiology (ACR) accreditation phantom and were evaluated in a blinded fashion for four CT manufacturers (8500 accreditation submissions for manufacturer A; 18,575 for manufacturer B; 8278 for manufacturer C; and 32,039 for manufacturer D). The attenuation value for water, acrylic (surrogate for trabecular bone), and Teflon (surrogate for cortical bone; Chemours) materials for an adult abdominal CT technique (120 kV, 240 mA, standard reconstruction algorithm) was used in the analysis. Differences in attenuation value across all manufacturers were assessed using the Kruskal-Wallis test followed by a post hoc test for pairwise comparisons. RESULTS. The mean attenuation value for water ranged from -0.3 to 2.7 HU, with highly significant differences among all manufacturers (p < 0.001). For the trabecular bone surrogate, differences in attenuation values across all manufacturers were also highly significant (p < 0.001), with mean values of 120.9 (SD, 3.5), 124.6 (3.3), 126.9 (4.4), and 123.9 (3.4) HU for manufacturers A, B, C, and D, respectively. For the cortical bone surrogate, differences in attenuation values across all manufacturers were also highly significant (p < 0.001), with mean values of 939.0 (14.2), 874.3 (13.3), 897.6 (11.3), and 912.7 (13.4) HU for manufacturers A, B, C, and D, respectively. CONCLUSION. CT scanners made by different manufacturers show systematic offsets in attenuation measurement when compared with each other. Knowledge of these off-sets is useful for optimizing the accuracy of opportunistic diagnosis of osteoporosis.


Asunto(s)
Osteoporosis/diagnóstico por imagen , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/instrumentación , Acreditación , Sesgo , Evaluación Educacional , Humanos , Reproducibilidad de los Resultados
7.
AJR Am J Roentgenol ; 215(3): 679-684, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32755183

RESUMEN

OBJECTIVE. The purpose of this study was to determine dose-area product-to-effective dose (DAP/E) conversion coefficients for a five-view pelvic radiograph series. DAP/E conversion coefficients may be used for radiation dose optimization when designing institutional protocols for pelvic trauma evaluation. MATERIALS AND METHODS. We conducted a retrospective record review of 25 patients at a level 1 trauma center who had sustained pelvic fractures and required a five-view pelvic radiograph series during workup. E values given in International Commission on Radiological Protection Publication 103 were simulated with a PC-based Monte Carlo program in conjunction with anthropomorphic phantoms adjusted on the basis of patient height and weight. Inputs included tube voltage (in kV), tube filtration (in millimeters of aluminum), anode angle, x-ray beam collimation, geometric distances, and angle of projection for each radiograph in the series. An incident polychromatic x-ray spectrum was generated and matched to the corresponding DAP values of each radiograph, and regression analysis was performed for the DAP/E conversion coefficients. RESULTS.E was strongly correlated with DAP independent from body mass index, with a mean global DAP/E conversion coefficient of 0.0125 mSv/dGy · cm2 for all radiographs (R2 = 0.95). Mean DAP/E conversion coefficients were 0.0133, 0.0110, 0.0143, 0.0113, and 0.0101 mSv/dGy · cm2 for anteroposterior, inlet, outlet, Judet left, and Judet right views, respectively (all R2 ≥ 0.94). CONCLUSION. DAP/E conversion coefficients are provided for a five-view pelvic radiograph series to allow reliable estimation of E. Measurement of cumulative E may affirm protocol design changes for the management of pelvic trauma.


Asunto(s)
Fracturas Óseas/diagnóstico por imagen , Huesos Pélvicos/diagnóstico por imagen , Huesos Pélvicos/lesiones , Dosis de Radiación , Radiografía Abdominal , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Método de Montecarlo , Fantasmas de Imagen , Estudios Retrospectivos , Centros Traumatológicos
8.
Quant Imaging Med Surg ; 10(8): 1580-1589, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32742953

RESUMEN

BACKGROUND: To determine the relationship between adipose tissue and skeletal muscle measurements on computed tomography (CT) and overall survival and major postoperative complications in patients with soft-tissue sarcoma (STS). METHODS: The retrospective study included 137 STS patients (75 men, 62 women; mean age, 53 years, SD 17.7; mean BMI, 28.5, SD 6.6) who had abdominal CT exams. On a single CT image, at the L4 pedicle level, measurements of visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and skeletal muscle area and attenuation were obtained using clinical PACS and specialized segmentation software. Clinical information was recorded, including STS characteristics (size, depth, grade, stage, and site), overall survival, and postoperative complications. The relationships between CT metrics and survival were analyzed using Cox proportional hazard models and those between CT metrics and postoperative complications using logistic regression models. RESULTS: There were 33 deaths and 41 major postoperative complications. Measured on clinical PACS, the psoas area (P=0.003), psoas index (P=0.006), psoas attenuation (P=0.011), and total muscle attenuation (P=0.023) were associated with overall survival. Using specialized software, psoas attenuation was also associated with overall survival (P=0.018). Adipose tissue metrics were not associated with survival or postoperative complications. CONCLUSIONS: In STS patients, CT-derived muscle size and attenuation are associated with overall survival. These prognostic biomarkers can be obtained using specialized segmentation software or routine clinical PACS.

9.
Med Phys ; 47(10): 4775-4785, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32677085

RESUMEN

PURPOSE: To validate a normal-resolution (NR) simulation (NRsim) algorithm that uses high-resolution (HR) or super-high resolution (SHR) acquisitions on a commercial HR computed tomography (CT) scanner by comparing image quality between NRsim-generated images and actual NR images. NRsim is intended to allow direct comparison between normal-resolution CT and HR/SHR reconstructions in clinical investigations, without repeating exams. METHODS: The Aquilion Precision CT (Canon Medical Systems Corporation) HR CT scanner has three resolution modes resulting from detector binning in the channel (x-y) and row (z) directions. For NR, each detector element is 0.5 mm × 0.5 mm along the channel and row directions, 0.25 mm × 0.5 mm for HR, and 0.25 mm × 0.25 mm for SHR. The NRsim algorithm simulates NR acquisitions from HR or SHR acquisitions (termed NRHR and NRSHR , respectively) by downsampling the pre-log raw data in the channel direction for the HR acquisitions and in the channel and row direction for the SHR acquisition. The downsampled data are then reconstructed using the same process as NR. The axial modulation transfer function (MTF), slice sensitivity profile (SSP), and CT number accuracy were measured using the Catphan 600 phantom, and the three-dimensional noise power spectrum (NPS) was measured in water-equivalent phantoms for standard protocols across a range of size-specific dose estimates (SSDE): head (6.2-29.8 mGy), lung (2.2-18.2 mGy), and body (5.6-19.4 mGy). The MTF and NPS measurements were combined to estimate low-contrast detectability (LCD) using a non-prewhitening model observer with an eye filter for a 5-mm disk with 10 HU contrast. All metrics were compared for NR, NRHR , and NRSHR images reconstructed using filtered back projection (FBP) and an iterative reconstruction algorithm (AIDR3D). We chose a 15% error threshold as a reasonable definition of success for NRsim when compared against actual NR based on published studies showing that a just-noticeable difference in image noise level for human observers is typically <15%. RESULTS: The axial MTF and SSPs for NRsim were in good agreement with NR demonstrated by a maximum difference of 5.1% for the MTF at 10% and 50% across materials (air, Teflon, LDPE, and polystyrene) and a maximum SSP difference of 2.2%. Noise magnitude differences were within 15% across the SSDE levels with the exception of below 4.5 mGy for the lung protocol with FBP. The relative RMSE of normalized NPS comparisons were all <15%. Differences in CT numbers for NRsim reconstructions were within 2 HU of NR. LCD for NRsim was within 15% of NR with the exception of NRSHR for the lung protocol SSDE levels below 3.7 mGy with FBP. CONCLUSIONS: NRsim, an algorithm for simulating NR acquisitions using HR and SHR raw data, was introduced and shown to generate images with spatial resolution, noise, HU accuracy, and LCD largely equivalent to scans acquired using an actual NR acquisition. At SSDE levels below ~5 mGy for the lung protocol, differences in noise magnitude and LCD for NRSHR were >15% which defines a region where NRsim degrades due to contributions from electronic noise.


Asunto(s)
Algoritmos , Tomografía Computarizada por Rayos X , Humanos , Fantasmas de Imagen , Dosis de Radiación , Interpretación de Imagen Radiográfica Asistida por Computador , Tomógrafos Computarizados por Rayos X
10.
J Appl Clin Med Phys ; 21(7): 11-15, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31800151

RESUMEN

The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8,000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines: Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances. Approved by AAPM's Executive Committee May 28, 2019.


Asunto(s)
Física Sanitaria , Oncología por Radiación , Humanos , Sociedades , Estados Unidos
12.
Radiol Phys Technol ; 10(2): 129-141, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28573551

RESUMEN

Conventional mammographic dosimetry has been developed over the past 40 years. Prior to the availability of high-resolution three-dimensional breast images, certain assumptions about breast anatomy were required. These assumptions were based on the information evident on two-dimensional mammograms; they included assumptions of thick skin, a uniform mixture of glandular and adipose tissue, and a median breast density of 50%. Recently, the availability of high-resolution breast CT studies has provided more accurate data about breast anatomy, and this, in turn, has provided the opportunity to update mammographic dosimetry. Based on hundreds of data sets on breast CT volume, a number of studies were performed and reported which have shed light on the basic breast anatomy specific to dosimetry in mammography. It was shown that the average skin thickness of the breast was approximately 1.5 mm, instead of the 4 or 5 mm in the past. In another study, 3-D breast CT data sets were used for validation of the 2-D algorithm developed at the University of Toronto, leading to data suggesting that the overall average breast density is of the order of 16-20%, rather than the previously assumed 50%. Both of these assumptions led to normalized glandular dose (DgN) coefficients which are higher than those of the past. However, a comprehensive study on hundreds of breast CT data sets confirmed the findings of other investigators that there is a more centralized average location of glandular tissue within the breast. Combined with Monte Carlo studies for dosimetry, when accurate models of the distribution of glandular tissue were used, a 30% reduction in the radiation dose (as determined by the DgN coefficient) was found as an average across typical molybdenum and tungsten spectra used clinically. The 30% average reduction was found even when the thinner skin and the lower average breast density were considered. The article reviews three specific anatomic observations made possible based on high-resolution breast CT data by several different research groups. It is noted that, periodically, previous assumptions pertaining to dosimetry can be updated when new information becomes available, so that more accurate dosimetry is achieved. Dogmatic practices typically change slowly, but it is hoped that the medical physics community will continue to evaluate changes in DgN coefficients such that they become more accurate.


Asunto(s)
Mama/diagnóstico por imagen , Imagenología Tridimensional , Radiometría/métodos , Mama/citología , Densidad de la Mama , Humanos , Mamografía
13.
Med Phys ; 44(6): 2148-2160, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28303582

RESUMEN

PURPOSE: The purpose of this work was to develop and make available x-ray spectra for some of the most widely used digital mammography (DM), breast tomosynthesis (BT), and breast CT (bCT) systems in North America. METHODS: The Monte Carlo code MCNP6 was used to simulate minimally filtered (only beryllium) x-ray spectra at 8 tube potentials from 20 to 49 kV for DM/BT, and 9 tube potentials from 35 to 70 kV for bCT. Vendor-specific anode compositions, effective anode angles, focal spot sizes, source-to-detector distances, and beryllium filtration were simulated. For each 0.5 keV energy bin in all simulated spectra, the fluence was interpolated using cubic splines across the range of simulated tube potentials to produce spectra in 1 kV increments from 20 to 49 kV for DM/BT and from 35 to 70 kV for bCT. The HVL of simulated spectra with conventional filtration (at 35 kV for DM/BT and 49 kV for bCT) was used to assess spectral differences resulting from variations in: (a) focal spot size (0.1 and 0.3 mm IEC), (b) solid angle at the detector (i.e., small and large FOV size), and (c) geometrical specifications for vendors that employ the same anode composition. RESULTS: Averaged across all DM/BT vendors, variations in focal spot and FOV size resulted in HVL differences of 2.2% and 0.9%, respectively. Comparing anode compositions separately, the HVL differences for Mo (GE, Siemens) and W (Hologic, Philips, and Siemens) spectra were 0.3% and 0.6%, respectively. Both the commercial Koning and prototype "Doheny" (UC Davis) bCT systems utilize W anodes with a 0.3 mm focal spot. Averaged across both bCT systems, variations in FOV size resulted in a 2.2% difference in HVL. In addition, the Koning spectrum was slightly harder than Doheny with a 4.2% difference in HVL. Therefore to reduce redundancy, a generic DM/BT system and a generic bCT system were used to generate the new spectra reported herein. The spectral models for application to DM/BT were dubbed the Molybdenum, Rhodium, and Tungsten Anode Spectral Models using Interpolating Cubic Splines (MASMICSM-T , RASMICSM-T , and TASMICSM-T ; subscript "M-T" indicating mammography and tomosynthesis). When compared against reference models (MASMIPM , RASMIPM , and TASMIPM ; subscript "M" indicating mammography), the new spectral models were in close agreement with mean differences of 1.3%, -1.3%, and -3.3%, respectively, across tube potential comparisons of 20, 30, and 40 kV with conventional filtration. TASMICSbCT -generated bCT spectra were also in close agreement with the reference TASMIP model with a mean difference of -0.8%, across tube potential comparisons of 35, 49, and 70 kV with 1.5 mm Al filtration. CONCLUSIONS: The Mo, Rh, and W anode spectra for application in DM and BT (MASMICSM-T , RASMICSM-T , and TASMICSM-T ) and the W anode spectra for bCT (TASMICSbCT ) as described in this study should be useful for individuals interested in modeling the performance of modern breast x-ray imaging systems including dual-energy mammography which extends to 49 kV. These new spectra are tabulated in spreadsheet form and are made available to any interested party.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Mamografía , Método de Montecarlo , Mama , Femenino , Humanos , Tungsteno , Rayos X
14.
Clin Orthop Relat Res ; 475(4): 1265-1271, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28050816

RESUMEN

BACKGROUND: Voluntary knuckle cracking is a common habit, with a reported prevalence of 25% to 45%. Habitual knuckle cracking also is a frequent source of questions for physicians, and the largest study to date reported an association with functional hand impairments. QUESTIONS/PURPOSES: (1) When compared with subjects who are not habitual knuckle crackers, do habitual knuckle crackers have greater QuickDASH scores, swelling, weakness, joint laxity, or ROM? (2) In subjects who crack their knuckles, does cracking immediately increase ROM? (3) What are the characteristic sonographic findings in joints that crack? METHODS: A prospective, institutional review board-approved study was performed on 400 metacarpophalangeal joints (MPJs) in 40 asymptomatic adult subjects. Of those, 30 subjects had a history of habitual knuckle cracking (defined as daily voluntary popping of MPJs). Clinical history provided by all subjects included a standardized QuickDASH questionnaire. Physical examination was performed by two orthopaedic surgeons (blinded to subjects' knuckle-cracking history and sonographic outcomes). The physical examination included evaluation for swelling, grip strength, and ROM before and after attempted knuckle cracking. Sonographic examination was conducted by one sonographer, with static and real-time cine images recorded before, during, and after MPJ distraction was performed by the subjects. Two musculoskeletal radiologists (blinded to subjects' knuckle-cracking history) interpreted the images for a definite hyperechoic focus during and after MPJ distraction; this was compared against the reference standard of an audible "crack" during joint distraction. RESULTS: Comparing subjects with knuckle cracking with those who did not crack their knuckles, there was no differences in QuickDASH scores (knuckle crackers, 3.7 ± 5.2; nonknuckle crackers, 3.2 ± 6.3; mean difference, 0.6; 95% CI, -3.5 to 4.6; p = 0.786), laxity (knuckle crackers, 2.0 ± 1.8; nonknuckle crackers, 0.3 ± 0.7; mean difference, 1.7; 95% CI, 0.5-2.9; p = 0.191), and grip strength (preultrasound, right hand, p = 0.499, left hand p = 0.575; postultrasound, right hand p = 0.777, left hand p = 0.424); ROM comparisons between subjects with a history of habitual knuckle cracking versus subjects without such a history only yielded increased ROM in joints that cracked during manipulation (knuckle cracking, 143.8° ± 26.5°; nonknuckle cracking, 134.9° ± 28.6°; mean difference, 9.0°; 95% CI, 2.9°-15.1°; p = 0.004). Swelling was not observed in any subjects, including when comparing MPJs before versus after distraction maneuvers that resulted in audible cracks. Immediately after a documented crack, there were greater ranges of motion with active flexion (preultrasound, 85.7° ± 12.4°; postultrasound, 88.6° ± 11.6°; mean difference, -2.9°; 95% CI, -5.1° to -0.8°; p = 0.009), passive flexion (preultrasound, 96.1° ± 12.4°; postultrasound, 100.3° ± 10.4°; mean difference, -4.3°; 95% CI, -6.2° to -2.3°; p < 0.001), passive extension (preultrasound, 41.8° ± 18.1°; postultrasound, 45.2° ± 17.6°; mean difference, -3.5°; 95% CI, -6.9° to -0.1°; p = 0.046), and passive total ROM (preultrasound, 137.8° ± 24.8°; postultrasound, 145.6° ± 23.1°; mean difference, -7.7°; 95% CI, -11.7° to -3.8°; p < 0.001). The characteristic sonographic finding observed during cracking events is an echogenic focus that appears de novo dynamically in the joint during distraction. CONCLUSIONS: We found no evidence of immediate adverse physical examination findings after knuckle cracking. However, we did find a small increase in ROM among joints that cracked compared with those that did not. Future studies should examine if there are any long-term beneficial and adverse clinical outcomes associated with habitual knuckle cracking. LEVEL OF EVIDENCE: Level I, prognostic study.


Asunto(s)
Hábitos , Inestabilidad de la Articulación/diagnóstico por imagen , Inestabilidad de la Articulación/fisiopatología , Articulación Metacarpofalángica/diagnóstico por imagen , Articulación Metacarpofalángica/fisiopatología , Ruido , Examen Físico , Ultrasonografía , Adulto , Fenómenos Biomecánicos , Evaluación de la Discapacidad , Femenino , Fuerza de la Mano , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Prospectivos , Rango del Movimiento Articular , Adulto Joven
15.
Int J Radiat Oncol Biol Phys ; 94(5): 978-92, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27026304

RESUMEN

Recent improvements in toxicity profiles of pediatric oncology patients are attributable, in part, to advances in the field of radiation oncology such as intensity modulated radiation (IMRT) and proton therapy (IMPT). While IMRT and IMPT deliver highly conformal dose to targeted volumes, they commonly demand the addition of 2- or 3-dimensional imaging for precise positioning--a technique known as image guided radiation therapy (IGRT). In this manuscript we address strategies to further minimize exposure risk in children by reducing effective IGRT dose. Portal X rays and cone beam computed tomography (CBCT) are commonly used to verify patient position during IGRT and, because their relative radiation exposure is far less than the radiation absorbed from therapeutic treatment beams, their sometimes significant contribution to cumulative risk can be easily overlooked. Optimizing the conformality of IMRT/IMPT while simultaneously ignoring IGRT dose may result in organs at risk being exposed to a greater proportion of radiation from IGRT than from therapeutic beams. Over a treatment course, cumulative central-axis CBCT effective dose can approach or supersede the amount of radiation absorbed from a single treatment fraction, a theoretical increase of 3% to 5% in mutagenic risk. In select scenarios, this may result in the underprediction of acute and late toxicity risk (such as azoospermia, ovarian dysfunction, or increased lifetime mutagenic risk) in radiation-sensitive organs and patients. Although dependent on variables such as patient age, gender, weight, body habitus, anatomic location, and dose-toxicity thresholds, modifying IGRT use and acquisition parameters such as frequency, imaging modality, beam energy, current, voltage, rotational degree, collimation, field size, reconstruction algorithm, and documentation can reduce exposure, avoid unnecessary toxicity, and achieve doses as low as reasonably achievable, promoting a culture and practice of "gentle IGRT."


Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Terapia de Protones/métodos , Exposición a la Radiación/prevención & control , Radioterapia Guiada por Imagen/métodos , Radioterapia de Intensidad Modulada/métodos , Tomografía Computarizada Espiral/métodos , Adolescente , Algoritmos , Niño , Preescolar , Tomografía Computarizada de Haz Cónico/efectos adversos , Craneofaringioma/radioterapia , Femenino , Marcadores Fiduciales , Humanos , Extremidad Inferior , Masculino , Neoplasias/radioterapia , Neoplasias Inducidas por Radiación/prevención & control , Neoplasias Primarias Secundarias/etiología , Neoplasias Primarias Secundarias/prevención & control , Órganos en Riesgo/efectos de la radiación , Neoplasias Hipofisarias/radioterapia , Terapia de Protones/efectos adversos , Traumatismos por Radiación/complicaciones , Traumatismos por Radiación/prevención & control , Dosificación Radioterapéutica , Radioterapia Guiada por Imagen/efectos adversos , Radioterapia de Intensidad Modulada/efectos adversos , Rabdomiosarcoma Embrionario/radioterapia , Riesgo , Dispersión de Radiación
17.
AJR Am J Roentgenol ; 206(4): 705-12, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26796990

RESUMEN

OBJECTIVE: The purposes of this study were to correlate fetal z-axis location within the maternal abdomen on CT with gestational age and estimate fetal dose reduction of a study limited to the abdomen only, with its lower aspect at the top of the iliac crests, compared with full abdominopelvic CT in pregnant trauma patients. MATERIALS AND METHODS: We performed a study of pregnant patients who underwent CT of the abdomen and pelvis for trauma at a single institution over a 10-year period. The inferior aspect of maternal liver, spleen, gallbladder, pancreas, adrenals, and kidneys was recorded as above or below the iliac crests. The distance from the iliac crest to the top of the fetus or gestational sac was determined. The CT images of the limited and full scanning studies were independently reviewed by two blinded radiologists to identify traumatic injuries. Fetal dose profiles, including both scatter and primary radiation, were computed analytically along the central axis of the patient to estimate fetal dose reduction. Linear regression analysis was performed between gestational age and distance of the fetus to the iliac crests. RESULTS: Thirty-five patients were included (mean age, 26.2 years). Gestational age ranged from 5 to 38 weeks, with 5, 19, and 11 gestations in the first, second, and third trimesters, respectively. All solid organs were above the iliac crests in all patients. In three of six patients, traumatic findings in the pelvis would have been missed with the limited study. There was high correlation between gestational age and distance of the fetus to the iliac crests (R(2) = 0.84). The mean gestational age at which the top of the fetus was at the iliac crest was 17.3 weeks. Using the limited scanning study, fetuses at 5, 20, and 40 weeks of gestation would receive an estimated 4.3%, 26.2%, and 59.9% of the dose, respectively, compared with the dose for the full scanning study. CONCLUSION: In pregnant patients in our series with a history of trauma, CT of the abdomen only was an effective technique to reduce fetal radiation exposure compared with full abdomen and pelvis CT.


Asunto(s)
Traumatismos Abdominales/diagnóstico por imagen , Feto/efectos de la radiación , Pelvis/diagnóstico por imagen , Pelvis/lesiones , Protección Radiológica/métodos , Adolescente , Adulto , Medios de Contraste , Femenino , Edad Gestacional , Humanos , Ilion/diagnóstico por imagen , Ilion/lesiones , Embarazo , Interpretación de Imagen Radiográfica Asistida por Computador , Estudios Retrospectivos
18.
Med Phys ; 42(11): 6337-48, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26520725

RESUMEN

PURPOSE: Current dosimetry methods in mammography assume that the breast is comprised of a homogeneous mixture of glandular and adipose tissues. Three-dimensional (3D) dedicated breast CT (bCT) data sets were used previously to assess the complex anatomical structure within the breast, characterizing the statistical distribution of glandular tissue in the breast. The purpose of this work was to investigate the effect of bCT-derived heterogeneous glandular distributions on dosimetry in mammography. METHODS: bCT-derived breast diameters, volumes, and 3D fibroglandular distributions were used to design realistic compressed breast models comprised of heterogeneous distributions of glandular tissue. The bCT-derived glandular distributions were fit to biGaussian functions and used as probability density maps to assign the density distributions within compressed breast models. The MCNPX 2.6.0 Monte Carlo code was used to estimate monoenergetic normalized mean glandular dose "DgN(E)" values in mammography geometry. The DgN(E) values were then weighted by typical mammography x-ray spectra to determine polyenergetic DgN (pDgN) coefficients for heterogeneous (pDgNhetero) and homogeneous (pDgNhomo) cases. The dependence of estimated pDgN values on phantom size, volumetric glandular fraction (VGF), x-ray technique factors, and location of the heterogeneous glandular distributions was investigated. RESULTS: The pDgNhetero coefficients were on average 35.3% (SD, 4.1) and 24.2% (SD, 3.0) lower than the pDgNhomo coefficients for the Mo-Mo and W-Rh x-ray spectra, respectively, across all phantom sizes and VGFs when the glandular distributions were centered within the breast phantom in the coronal plane. At constant breast size, increasing VGF from 7.3% to 19.1% lead to a reduction in pDgNhetero relative to pDgNhomo of 23.6%-27.4% for a W-Rh spectrum. Displacement of the glandular distribution, at a distance equal to 10% of the compressed breast width in the superior and inferior directions, resulted in a 37.3% and a -26.6% change in the pDgNhetero coefficient, respectively, relative to the centered distribution for the Mo-Mo spectrum. Lateral displacement of the glandular distribution, at a distance equal to 10% of the compressed breast width, resulted in a 1.5% change in the pDgNhetero coefficient relative to the centered distribution for the W-Rh spectrum. CONCLUSIONS: Introducing bCT-derived heterogeneous glandular distributions into mammography phantom design resulted in decreased glandular dose relative to the widely used homogeneous assumption. A homogeneous distribution overestimates the amount of glandular tissue near the entrant surface of the breast, where dose deposition is exponentially higher. While these findings are based on clinically measured distributions of glandular tissue using a large cohort of women, future work is required to improve the classification of glandular distributions based on breast size and overall glandular fraction.


Asunto(s)
Absorción de Radiación/fisiología , Mama/fisiología , Mamografía/métodos , Modelos Biológicos , Exposición a la Radiación/análisis , Tomografía Computarizada por Rayos X/métodos , Adulto , Anciano , Anciano de 80 o más Años , Simulación por Computador , Femenino , Humanos , Persona de Mediana Edad , Modelos Estadísticos , Dosis de Radiación , Protección Radiológica/métodos , Radiometría/métodos , Dispersión de Radiación
19.
Phys Med Biol ; 60(18): 7179-90, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26348995

RESUMEN

To develop tables of normalized glandular dose coefficients D(g)N for a range of anode-filter combinations and tube voltages used in contemporary breast imaging systems. Previously published mono-energetic D(g)N values were used with various spectra to mathematically compute D(g)N coefficients. The tungsten anode spectra from TASMICS were used; molybdenum and rhodium anode-spectra were generated using MCNPX Monte Carlo code. The spectra were filtered with various thicknesses of Al, Rh, Mo or Cu. An initial half value layer (HVL) calculation was made using the anode and filter material. A range of the HVL values was produced with the addition of small thicknesses of polymethyl methacrylate (PMMA) as a surrogate for the breast compression paddle, to produce a range of HVL values at each tube voltage. Using a spectral weighting method, D(g)N coefficients for the generated spectra were calculated for breast glandular densities of 0%, 12.5%, 25%, 37.5%, 50% and 100% for a range of compressed breast thicknesses from 3 to 8 cm. Eleven tables of normalized glandular dose (D(g)N) coefficients were produced for the following anode/filter combinations: W + 50 µm Ag, W + 500 µm Al, W + 700 µm Al, W + 200 µm Cu, W + 300 µm Cu, W + 50 µm Rh, Mo + 400 µm Cu, Mo + 30 µm Mo, Mo + 25 µm Rh, Rh + 400 µm Cu and Rh + 25 µm Rh. Where possible, these results were compared to previously published D(g)N values and were found to be on average less than 2% different than previously reported values.Over 200 pages of D(g)N coefficients were computed for modeled x-ray system spectra that are used in a number of new breast imaging applications. The reported values were found to be in excellent agreement when compared to published values.


Asunto(s)
Algoritmos , Mama/fisiopatología , Mamografía/métodos , Intensificación de Imagen Radiográfica/métodos , Espectrometría por Rayos X/métodos , Femenino , Humanos , Modelos Biológicos , Molibdeno , Método de Montecarlo , Dosis de Radiación , Rodio , Tungsteno , Rayos X
20.
J Appl Clin Med Phys ; 16(3): 5291, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-26103491

RESUMEN

The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8,000 members and is the principal organization of medical physicists in the United States.The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner.Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized.The following terms are used in the AAPM practice guidelines:Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline.Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.


Asunto(s)
Física Sanitaria/educación , Física Sanitaria/normas , Oncología por Radiación/educación , Oncología por Radiación/normas , Sociedades Científicas/normas , Enseñanza/normas , Competencia Clínica/normas , Evaluación Educacional/normas , Mentores , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...