Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cells ; 10(7)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209882

RESUMEN

GABA (gamma-aminobutyric acid) and melatonin are endogenous compounds that enhance plant responses to abiotic stresses. The response of Vicia faba to different stressors (salinity (NaCl), poly ethylene glycol (PEG), and sulfur dioxide (SO2)) was studied after priming with sole application of GABA and melatonin or their co-application (GABA + melatonin). Both melatonin and GABA and their co-application increased leaf area, number of flowers, shoot dry and fresh weight, and total biomass. Plants treated with GABA, melatonin, and GABA + melatonin developed larger stomata with wider aperture compared to the stomata of control plants. The functionality of the photosynthetic system was improved in primed plants. To investigate the photosynthetic functionality in details, the leaf samples of primed plants were exposed to different stressors, including SO2, PEG, and NaCl. The maximum quantum yield of photosystem II (PS II) was higher in the leaf samples of primed plants, while the non-photochemical quenching (NPQ) of primed plants was decreased when leaf samples were exposed to the stressors. Correlation analysis showed the association of initial PIabs with post-stress FV/FM and NPQ. Stressors attenuated the association of initial PIabs with both FV/FM and NPQ, while priming plants with GABA, melatonin, or GABA + melatonin minimized the effect of stressors by attenuating these correlations. In conclusion, priming plants with both GABA and melatonin improved growth and photosynthetic performance of Vicia faba and mitigated the effects of abiotic stressors on the photosynthetic performance.


Asunto(s)
Melatonina/farmacología , Fotosíntesis/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Ácido gamma-Aminobutírico/farmacología , Biomasa , Clorofila/metabolismo , Flores/efectos de los fármacos , Flores/fisiología , Presión Osmótica/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/fisiología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/fisiología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Cloruro de Sodio/farmacología , Dióxido de Azufre/toxicidad , Vicia faba/efectos de los fármacos , Vicia faba/crecimiento & desarrollo , Vicia faba/fisiología
2.
Funct Plant Biol ; 48(5): 515-528, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33453752

RESUMEN

Light emitting diodes (LEDs) now enable precise light quality control. Prior to commercialisation however, the plant response to the resultant light quality regime ought to be addressed. The response was examined here in chrysanthemum by evaluating growth, chlorophyll fluorescence (before and following water deficit), as well as stomatal anatomy (density, size, pore dimensions and aperture heterogeneity) and closing ability. Plants were grown under blue (B), red (R), a mixture of R (70%) and B (RB), or white (W; 41% B, 39% intermediate spectrum, 20% R) light LEDs. Although R light promoted growth, it also caused leaf deformation (epinasty) and disturbed the photosynthetic electron transport system. The largest stomatal size was noted following growth under B light, whereas the smallest under R light. The largest stomatal density was observed under W light. Monochromatic R light stimulated both the rate and the degree of stomatal closure in response to desiccation compared with the other light regimes. We conclude that stomatal size is mainly controlled by the B spectrum, whereas a broader spectral range is important for determining stomatal density. Monochromatic R light enhanced stomatal ability to regulate water loss upon desiccation.


Asunto(s)
Chrysanthemum , Transporte de Electrón , Luz , Fotosíntesis , Hojas de la Planta
3.
Sci Rep ; 10(1): 3356, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32098998

RESUMEN

Gamma-Aminobutyric acid (GABA) accumulates in plants following exposure to heavy metals. To investigate the role of GABA in cadmium (Cd) tolerance and elucidate the underlying mechanisms, GABA (0, 25 and 50 µM) was applied to Cd-treated maize plants. Vegetative growth parameters were improved in both Cd-treated and control plants due to GABA application. Cd uptake and translocation were considerably inhibited by GABA. Antioxidant enzyme activity was enhanced in plants subjected to Cd. Concurrently GABA caused further increases in catalase and superoxide dismutase activities, which led to a significant reduction in hydrogen peroxide, superoxide anion and malondealdehyde contents under stress conditions. Polyamine biosynthesis-responsive genes, namely ornithine decarboxylase and spermidine synthase, were induced by GABA in plants grown under Cd shock. GABA suppressed polyamine oxidase, a gene related to polyamine catabolism, when plants were exposed to Cd. Consequently, different forms of polyamines were elevated in Cd-exposed plants following GABA application. The maximum quantum efficiency of photosystem II (Fv/Fm) was decreased by Cd-exposed plants, but was completely restored by GABA to the same value in the control. These results suggest a multifaceted contribution of GABA, through regulation of Cd uptake, production of reactive oxygen species and polyamine metabolism, in response to Cd stress.


Asunto(s)
Antioxidantes/metabolismo , Poliaminas/metabolismo , Zea mays/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Cadmio/toxicidad , Catalasa/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Superóxido Dismutasa/metabolismo , Zea mays/crecimiento & desarrollo , Poliamino Oxidasa
4.
Physiol Mol Biol Plants ; 25(3): 741-752, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31168236

RESUMEN

Light spectrum of growing environment is a determinant factor for plant growth and photosynthesis. Plants under different light spectra exhibit different growth and photosynthetic behaviors. To unravel the effects of light spectra on plant growth, photosynthetic pigments and electron transport chain reactions, purple and green basil varieties were grown under five different light spectra including white (W: 400-730 nm), blue (B: 400-500 nm), red (R: 600-700 nm) and two combinations of R and B lights (R50B50 and R70B30), with same PPFD (photosynthetic photon flux density). Almost all values for shoot and root growth traits were higher in purple variety and were improved by combinational R and B lights (especially under R70B30), while they were negatively influenced by B monochromatic light when compared to growth traits of W-grown plants. Highest concentration of photosynthetic pigments was detected in R70B30. Biophysical properties of photosynthetic electron transport chain showed higher florescence intensity at all steps of OJIP kinetics in plants grown under R light in both varieties. Oxygen evolving complex activity (Fv/Fo) and PSII maximum quantum efficiency (Fv/Fm) in R-grown plants were lower than plants grown under other light spectra. Values for parameters related to specific energy fluxes per reaction center (ABS/RC, TRo/RC, ETo/RC and DIo/RC) were increased under R light (especially for purple variety). Performance index was significantly decreased under R light in both varieties. In conclusion, light spectra other than RB combination, induced various limitations on pigmentations, efficiency of electron transport and growth of basil plants and the responses were cultivar specific.

5.
AoB Plants ; 10(5): ply052, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30349659

RESUMEN

Photosynthesis is defined as a light-dependent process; however, it is negatively influenced by high light (HL) intensities. To investigate whether the memory of growth under monochromatic or combinational lights can influence plant responses to HL, rose plants were grown under different light spectra [including red (R), blue (B), 70:30 % red:blue (RB) and white (W)] and were exposed to HL (1500 µmol m-2 s-1) for 12 h. Polyphasic chlorophyll a fluorescence (OJIP) transients revealed that although monochromatic R- and B-grown plants performed well under control conditions, the functionality of their electron transport system was more sensitive to HL than that of the RB- and W-grown plants. Before exposure to HL, the highest anthocyanin concentration was observed in R- and B-grown plants, while exposure to HL reduced anthocyanin concentration in both R- and B-grown plants. Ascorbate peroxidase and catalase activities decreased, while superoxide dismutase activity was increased after exposure to HL. This caused an increase in H2O2 concentration and malondialdehyde content following HL exposure. Soluble carbohydrates were decreased by exposure to HL, and this decrease was more emphasized in R- and B-grown plants. In conclusion, growing plants under monochromatic light reduced the plants ability to cope with HL stress.

6.
Plant Physiol Biochem ; 130: 157-172, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29990769

RESUMEN

Gamma-Amino Butyric Acid (GABA) is a substantial component of the free amino acid pool with low concentration in plant tissues. Enhanced GABA content occurs during plant growth and developmental processes like seed germination. GABA level, basically, alters in response to many endogenous and exogenous stimuli. In the current study, GABA effects were studied on germination, photosynthetic performance and oxidative damages in salt-exposed lettuce plants. Three NaCl (0, 40 and 80 mM) and two GABA (0 and 25 µM) concentrations were applied on lettuce during two different developmental (seed germination and seedlings growth) stages. Negative effects of salinity on germination and plant growth were removed by GABA application. GABA significantly reduced mean germination time (MGT) in salt-exposed lettuce seeds. Although, salinity caused a significant decline in maximum quantum yield of photosystem II (Fv/Fm) during distinct steps of plant growth, GABA application improved Fv/Fm particularly on high salinity level. GABA decreased specific energy fluxes per reaction center (RC) for energy absorption and dissipation, while enhanced-electron transport flux in photosynthetic apparatus of lettuce plants was observed in GABA-supplemented plants. Moreover, decline in non-photochemical quenching (NPQ) and quenching coefficients (qP, qL, qN) by salt stress were recovered by GABA application. Elevated electrolyte leakage considerably decreased by GABA exposure on salt-treated plants. Although, proline level increased by NaCl treatments in a concentration dependent manner, combined application of salt with GABA caused a significant reduction in proline content. Catalase; EC 1.11.1.6 (CAT), l-ascorbate peroxidase; EC 1.11.1.11 (APX), and superoxide dismutase; EC 1.15.1.1 (SOD) activities were increased by GABA exposure in salt-supplemented plants that resulted in regulated hydrogen peroxide level. In conclusion, a multifaceted role for GABA is suggested for minimizing detrimental effects of salinity on lettuce through improvement of photosynthetic functionality and regulation of oxidative stress.


Asunto(s)
Lactuca/efectos de los fármacos , Lactuca/fisiología , Fotosíntesis/efectos de los fármacos , Cloruro de Sodio/toxicidad , Ácido gamma-Aminobutírico/farmacología , Germinación , Estrés Oxidativo , Tolerancia a la Sal , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo
7.
Coll Antropol ; 27(1): 391-402, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12974170

RESUMEN

In this work it is shown how anthropological data are among the most needed factors in ergonomical valorization of crew working spaces. Ship's working or living environment involves many unique human factors, which should be specially considered in our case as limitation of crew space. In this work we have chosen ships of different years of construction to prove this tendency. As a micro study, the work posture analysis using the pulling force experiment is performed in order to determine lumbar moment, intra-abdominal pressure as a measure of evaluating and comparing different crew work positions. As a macro-study, the "crew work posture analysis" was carried out by the use of the data collected from real cases. The most probable work postures in different spaces of a ship are classified and after some corrections of the work place the profile and its grade were determined. The "statistical analysis for real ship's spaces" is also performed, as well as another macro study, in order to show some real designed ship spaces from the point of view of the allocated volume.


Asunto(s)
Ergonomía , Salud Laboral , Navíos , Antropología Física , Arquitectura y Construcción de Instituciones de Salud , Humanos , Postura , Lugar de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...