Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Stem Cells Dev ; 33(9-10): 201-213, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38390839

RESUMEN

Because derivation of retinal organoids (ROs) and transplantation are frequently split between geographically distant locations, we developed a special shipping device and protocol capable of the organoids' delivery to any location. Human embryonic stem cell (hESC)-derived ROs were differentiated from the hESC line H1 (WA01), shipped overnight to another location, and then transplanted into the subretinal space of blind immunodeficient retinal degeneration (RD) rats. Development of transplants was monitored by spectral-domain optical coherence tomography. Visual function was accessed by optokinetic tests and superior colliculus (SC) electrophysiology. Cryostat sections through transplants were stained with hematoxylin and eosin; or processed for immunohistochemistry to label human donor cells, retinal cell types, and synaptic markers. After transplantation, ROs integrated into the host RD retina, formed functional photoreceptors, and improved vision in rats with advanced RD. The survival and vision improvement are comparable with our previous results of hESC-ROs without a long-distance delivery. Furthermore, for the first time in the stem cell transplantation field, we demonstrated that the response heatmap on the SC showed a similar shape to the location of the transplant in the host retina, which suggested the point-to-point projection of the transplant from the retina to SC. In conclusion, our results showed that using our special device and protocol, the hESC-derived ROs can be shipped over long distance and are capable of survival and visual improvement after transplantation into the RD rats. Our data provide a proof-of-concept for stem cell replacement as a therapy for RD patients.


Asunto(s)
Células Madre Embrionarias Humanas , Organoides , Retina , Degeneración Retiniana , Animales , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/trasplante , Degeneración Retiniana/terapia , Degeneración Retiniana/patología , Humanos , Organoides/citología , Organoides/trasplante , Ratas , Retina/citología , Retina/patología , Diferenciación Celular , Trasplante de Células Madre/métodos , Supervivencia Celular , Tomografía de Coherencia Óptica
2.
Asia Pac J Ophthalmol (Phila) ; 11(4): 314-327, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36041146

RESUMEN

Retinal degeneration (RD) is a significant cause of incurable blindness worldwide. Photoreceptors and retinal pigmented epithelium are irreversibly damaged in advanced RD. Functional replacement of photoreceptors and/or retinal pigmented epithelium cells is a promising approach to restoring vision. This paper reviews the current status and explores future prospects of the transplantation therapy provided by pluripotent stem cell-derived retinal organoids (ROs). This review summarizes the status of rodent RD disease models and discusses RO culture and analytical tools to evaluate RO quality and function. Finally, we review and discuss the studies in which RO-derived cells or sheets were transplanted. In conclusion, methods to derive ROs from pluripotent stem cells have significantly improved and become more efficient in recent years. Meanwhile, more novel technologies are applied to characterize and validate RO quality. However, opportunity remains to optimize tissue differentiation protocols and achieve better RO reproducibility. In order to screen high-quality ROs for downstream applications, approaches such as noninvasive and label-free imaging and electrophysiological functional testing are promising and worth further investigation. Lastly, transplanted RO-derived tissues have allowed improvements in visual function in several RD models, showing promises for clinical applications in the future.


Asunto(s)
Organoides , Degeneración Retiniana , Humanos , Especies Reactivas de Oxígeno , Reproducibilidad de los Resultados , Retina , Degeneración Retiniana/terapia
3.
Front Cell Neurosci ; 15: 796903, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955757

RESUMEN

Pluripotent stem cell-derived organoid technologies have opened avenues to preclinical basic science research, drug discovery, and transplantation therapy in organ systems. Stem cell-derived organoids follow a time course similar to species-specific organ gestation in vivo. However, heterogeneous tissue yields, and subjective tissue selection reduce the repeatability of organoid-based scientific experiments and clinical studies. To improve the quality control of organoids, we introduced a live imaging technique based on two-photon microscopy to non-invasively monitor and characterize retinal organoids' (RtOgs') long-term development. Fluorescence lifetime imaging microscopy (FLIM) was used to monitor the metabolic trajectory, and hyperspectral imaging was applied to characterize structural and molecular changes. We further validated the live imaging experimental results with endpoint biological tests, including quantitative polymerase chain reaction (qPCR), single-cell RNA sequencing, and immunohistochemistry. With FLIM results, we analyzed the free/bound nicotinamide adenine dinucleotide (f/b NADH) ratio of the imaged regions and found that there was a metabolic shift from glycolysis to oxidative phosphorylation. This shift occurred between the second and third months of differentiation. The total metabolic activity shifted slightly back toward glycolysis between the third and fourth months and stayed relatively stable between the fourth and sixth months. Consistency in organoid development among cell lines and production lots was examined. Molecular analysis showed that retinal progenitor genes were expressed in all groups between days 51 and 159. Photoreceptor gene expression emerged around the second month of differentiation, which corresponded to the shift in the f/b NADH ratio. RtOgs between 3 and 6 months of differentiation exhibited photoreceptor gene expression levels that were between the native human fetal and adult retina gene expression levels. The occurrence of cone opsin expression (OPN1 SW and OPN1 LW) indicated the maturation of photoreceptors in the fourth month of differentiation, which was consistent with the stabilized level of f/b NADH ratio starting from 4 months. Endpoint single-cell RNA and immunohistology data showed that the cellular compositions and lamination of RtOgs at different developmental stages followed those in vivo.

4.
Front Neurosci ; 15: 752958, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34764853

RESUMEN

End-stage age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are two major retinal degenerative (RD) conditions that result in irreversible vision loss. Permanent eye damage can also occur in battlefields or due to accidents. This suggests there is an unmet need for developing effective strategies for treating permanent retinal damages. In previous studies, co-grafted sheets of fetal retina with its retinal pigment epithelium (RPE) have demonstrated vision improvement in rat retinal disease models and in patients, but this has not yet been attempted with stem-cell derived tissue. Here we demonstrate a cellular therapy for irreversible retinal eye injuries using a "total retina patch" consisting of retinal photoreceptor progenitor sheets and healthy RPE cells on an artificial Bruch's membrane (BM). For this, retina organoids (ROs) (cultured in suspension) and polarized RPE sheets (cultured on an ultrathin parylene substrate) were made into a co-graft using bio-adhesives [gelatin, growth factor-reduced matrigel, and medium viscosity (MVG) alginate]. In vivo transplantation experiments were conducted in immunodeficient Royal College of Surgeons (RCS) rats at advanced stages of retinal degeneration. Structural reconstruction of the severely damaged retina was observed based on histological assessments and optical coherence tomography (OCT) imaging. Visual functional assessments were conducted by optokinetic behavioral testing and superior colliculus electrophysiology. Long-term survival of the co-graft in the rat subretinal space and improvement in visual function were observed. Immunohistochemistry showed that co-grafts grew, generated new photoreceptors and developed neuronal processes that were integrated into the host retina. This novel approach can be considered as a new therapy for complete replacement of a degenerated retina.

5.
Transl Vis Sci Technol ; 10(12): 30, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34668935

RESUMEN

Purpose: Two-photon excitation fluorescence (2PEF) reveals information about tissue function. Concerns for phototoxicity demand lower light exposure during imaging. Reducing excitation light reduces the quality of the image by limiting fluorescence emission. We applied deep learning (DL) super-resolution techniques to images acquired from low light exposure to yield high-resolution images of retinal and skin tissues. Methods: We analyzed two methods: a method based on U-Net and a patch-based regression method using paired images of skin (550) and retina (1200), each with low- and high-resolution paired images. The retina dataset was acquired at low and high laser powers from retinal organoids, and the skin dataset was obtained from averaging 7 to 15 frames or 70 frames. Mean squared error (MSE) and the structural similarity index measure (SSIM) were outcome measures for DL algorithm performance. Results: For the skin dataset, the patches method achieved a lower MSE (3.768) compared with U-Net (4.032) and a high SSIM (0.824) compared with U-Net (0.783). For the retinal dataset, the patches method achieved an average MSE of 27,611 compared with 146,855 for the U-Net method and an average SSIM of 0.636 compared with 0.607 for the U-Net method. The patches method was slower (303 seconds) than the U-Net method (<1 second). Conclusions: DL can reduce excitation light exposure in 2PEF imaging while preserving image quality metrics. Translational Relevance: DL methods will aid in translating 2PEF imaging from benchtop systems to in vivo imaging of light-sensitive tissues such as the retina.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Humanos , Imagen por Resonancia Magnética , Microscopía , Fotofobia
6.
Lab Chip ; 21(17): 3361-3377, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34236056

RESUMEN

Retinal degeneration is a leading cause of vision impairment and blindness worldwide and medical care for advanced disease does not exist. Stem cell-derived retinal organoids (RtOgs) became an emerging tool for tissue replacement therapy. However, existing RtOg production methods are highly heterogeneous. Controlled and predictable methodology and tools are needed to standardize RtOg production and maintenance. In this study, we designed a shear stress-free micro-millifluidic bioreactor for nearly labor-free retinal organoid maintenance. We used a stereolithography (SLA) 3D printer to fabricate a mold from which Polydimethylsiloxane (PDMS) was cast. We optimized the chip design using in silico simulations and in vitro evaluation to optimize mass transfer efficiency and concentration uniformity in each culture chamber. We successfully cultured RtOgs at three different differentiation stages (day 41, 88, and 128) on an optimized bioreactor chip for more than 1 month. We used different quantitative and qualitative techniques to fully characterize the RtOgs produced by static dish culture and bioreactor culture methods. By analyzing the results from phase contrast microscopy, single-cell RNA sequencing (scRNA seq), quantitative polymerase chain reaction (qPCR), immunohistology, and electron microscopy, we found that bioreactor-cultured RtOgs developed cell types and morphology comparable to static cultured ones and exhibited similar retinal genes expression levels. We also evaluated the metabolic activity of RtOgs in both groups using fluorescence lifetime imaging (FLIM), and found that the outer surface region of bioreactor cultured RtOgs had a comparable free/bound NADH ratio and overall lower long lifetime species (LLS) ratio than static cultured RtOgs during imaging. To summarize, we validated an automated micro-millifluidic device with significantly reduced shear stress to produce RtOgs of comparable quality to those maintained in conventional static culture.


Asunto(s)
Dispositivos Laboratorio en un Chip , Organoides , Reactores Biológicos , Diferenciación Celular , Retina
7.
Appl Sci (Basel) ; 11(5)2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35251703

RESUMEN

The retina is a complex and fragile photosensitive part of the central nervous system which is prone to degenerative diseases leading to permanent vision loss. No proven treatment strategies exist to treat or reverse the degenerative conditions. Recent investigations demonstrate that cell transplantation therapies to replace the dysfunctional retinal pigment epithelial (RPE) cells and or the degenerating photoreceptors (PRs) are viable options to restore vision. Pluripotent stem cells, retinal progenitor cells, and somatic stem cells are the main cell sources used for cell transplantation therapies. The success of retinal transplantation based on cell suspension injection is hindered by limited cell survival and lack of cellular integration. Recent advances in material science helped to develop strategies to grow cells as intact monolayers or as sheets on biomaterial scaffolds for transplantation into the eyes. Such implants are found to be more promising than the bolus injection approach. Tissue engineering techniques are specifically designed to construct biodegradable or non-degradable polymer scaffolds to grow cells as a monolayer and construct implantable grafts. The engineered cell construct along with the extracellular matrix formed, can hold the cells in place to enable easy survival, better integration, and improved visual function. This article reviews the advances in the use of scaffolds for transplantation studies in animal models and their application in current clinical trials.

8.
Invest Ophthalmol Vis Sci ; 61(11): 34, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32945842

RESUMEN

Purpose: To study if human embryonic stem cell-derived photoreceptors could survive and function without the support of retinal pigment epithelium (RPE) after transplantation into Royal College of Surgeons rats, a rat model of retinal degeneration caused by RPE dysfunction. Methods: CSC14 human embryonic stem cells were differentiated into primordial eye structures called retinal organoids. Retinal organoids were analyzed by quantitative PCR and immunofluorescence and compared with human fetal retina. Retinal organoid sheets (30-70 day of differentiation) were transplanted into immunodeficient RCS rats, aged 44 to 56 days. The development of transplant organoids in vivo in relation to the host was examined by optical coherence tomography. Visual function was assessed by optokinetic testing, electroretinogram, and superior colliculus electrophysiologic recording. Cryostat sections were analyzed for various retinal, synaptic, and donor markers. Results: Retinal organoids showed similar gene expression to human fetal retina transplanted rats demonstrated significant improvement in visual function compared with RCS nonsurgery and sham surgery controls by ERGs at 2 months after surgery (but not later), optokinetic testing (up to 6 months after surgery) and electrophysiologic superior colliculus recordings (6-8 months after surgery). The transplanted organoids survived more than 7 months; developed photoreceptors with inner and outer segments, and other retinal cells; and were well-integrated within the host. Conclusions: This study, to our knowledge, is the first to show that transplanted photoreceptors survive and function even with host's dysfunctional RPE. Our findings suggest that transplantation of organoid sheets from stem cells may be a promising approach/therapeutic for blinding diseases.


Asunto(s)
Células Fotorreceptoras/metabolismo , Degeneración Retiniana/metabolismo , Epitelio Pigmentado de la Retina/fisiopatología , Animales , Modelos Animales de Enfermedad , Humanos , Organoides/metabolismo , Organoides/trasplante , Células Fotorreceptoras/patología , Ratas , Ratas Mutantes , Degeneración Retiniana/patología , Degeneración Retiniana/fisiopatología , Epitelio Pigmentado de la Retina/patología , Tomografía de Coherencia Óptica
9.
J Neurosci ; 38(50): 10709-10724, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30396913

RESUMEN

To combat retinal degeneration, healthy fetal retinal sheets have been successfully transplanted into both rodent models and humans, with synaptic connectivity between transplant and degenerated host retina having been confirmed. In rodent studies, transplants have been shown to restore responses to flashes of light in a region of the superior colliculus corresponding to the location of the transplant in the host retina. To determine the quality and detail of visual information provided by the transplant, visual responsivity was studied here at the level of visual cortex where higher visual perception is processed. For our model, we used the transgenic Rho-S334ter line-3 rat (both sexes), which loses photoreceptors at an early age and is effectively blind at postnatal day 30. These rats received fetal retinal sheet transplants in one eye between 24 and 40 d of age. Three to 10 months following surgery, visually responsive neurons were found in regions of primary visual cortex matching the transplanted region of the retina that were as highly selective as normal rat to stimulus orientation, size, contrast, and spatial and temporal frequencies. Conversely, we found that selective response properties were largely absent in nontransplanted line-3 rats. Our data show that fetal retinal sheet transplants can result in remarkably normal visual function in visual cortex of rats with a degenerated host retina and represents a critical step toward developing an effective remedy for the visually impaired human population.SIGNIFICANCE STATEMENT Age-related macular degeneration and retinitis pigmentosa lead to profound vision loss in millions of people worldwide. Many patients lose both retinal pigment epithelium and photoreceptors. Hence, there is a great demand for the development of efficient techniques that allow for long-term vision restoration. In this study, we transplanted dissected fetal retinal sheets, which can differentiate into photoreceptors and integrate with the host retina of rats with severe retinal degeneration. Remarkably, we show that transplants generated visual responses in cortex similar in quality to normal rats. Furthermore, transplants preserved connectivity within visual cortex and the retinal relay from the lateral geniculate nucleus to visual cortex, supporting their potential application in curing vision loss associated with retinal degeneration.


Asunto(s)
Potenciales Evocados Visuales/fisiología , Retina/trasplante , Degeneración Retiniana/fisiopatología , Degeneración Retiniana/terapia , Índice de Severidad de la Enfermedad , Corteza Visual/fisiología , Animales , Femenino , Humanos , Masculino , Estimulación Luminosa/métodos , Ratas , Ratas Long-Evans , Ratas Transgénicas , Degeneración Retiniana/patología
10.
Graefes Arch Clin Exp Ophthalmol ; 256(11): 2113-2125, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30215097

RESUMEN

PURPOSE: To create new immunodeficient Royal College of Surgeons (RCS) rats by introducing the defective MerTK gene into athymic nude rats. METHODS: Female homozygous RCS (RCS-p+/RCS-p+) and male nude rats (Hsd:RH-Foxn1mu, mutation in the foxn1 gene; no T cells) were crossed to produce heterozygous F1 progeny. Double homozygous F2 progeny obtained by crossing the F1 heterozygotes was identified phenotypically (hair loss) and genotypically (RCS-p+ gene determined by PCR). Retinal degenerative status was confirmed by optical coherence tomography (OCT) imaging, electroretinography (ERG), optokinetic (OKN) testing, superior colliculus (SC) electrophysiology, and by histology. The effect of xenografts was assessed by transplantation of human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE) and human-induced pluripotent stem cell-derived RPE (iPS-RPE) into the eye. Morphological analysis was conducted based on hematoxylin and eosin (H&E) and immunostaining. Age-matched pigmented athymic nude rats were used as control. RESULTS: Approximately 6% of the F2 pups (11/172) were homozygous for RCS-p+ gene and Foxn1mu gene. Homozygous males crossed with heterozygous females resulted in 50% homozygous progeny for experimentation. OCT imaging demonstrated significant loss of retinal thickness in homozygous rats. H&E staining showed photoreceptor thickness reduced to 1-3 layers at 12 weeks of age. Progressive loss of visual function was evidenced by OKN testing, ERG, and SC electrophysiology. Transplantation experiments demonstrated survival of human-derived cells and absence of apparent immune rejection. CONCLUSIONS: This new rat animal model developed by crossing RCS rats and athymic nude rats is suitable for conducting retinal transplantation experiments involving xenografts.


Asunto(s)
Modelos Animales de Enfermedad , Células Madre Embrionarias Humanas/trasplante , Síndromes de Inmunodeficiencia/terapia , Células Madre Pluripotentes Inducidas/trasplante , Distrofias Retinianas/terapia , Epitelio Pigmentado de la Retina/trasplante , Animales , Supervivencia Celular , Electrorretinografía , Femenino , Técnicas de Genotipaje , Supervivencia de Injerto/fisiología , Células Madre Embrionarias Humanas/fisiología , Humanos , Síndromes de Inmunodeficiencia/diagnóstico , Síndromes de Inmunodeficiencia/fisiopatología , Células Madre Pluripotentes Inducidas/fisiología , Masculino , Fenotipo , Ratas , Ratas Desnudas , Retina/fisiopatología , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/fisiopatología , Epitelio Pigmentado de la Retina/fisiología , Tomografía de Coherencia Óptica , Tirosina Quinasa c-Mer/genética
11.
Invest Ophthalmol Vis Sci ; 59(6): 2586-2603, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29847666

RESUMEN

Purpose: To investigate whether sheets of retina organoids derived from human embryonic stem cells (hESCs) can differentiate, integrate, and improve visual function in an immunodeficient rat model of severe retinal degeneration (RD). Methods: 3D hESC-derived retina organoids were analyzed by quantitative PCR and immunofluorescence. Sheets dissected from retina organoids (30-65 days of differentiation) were transplanted into the subretinal space of immunodeficient rho S334ter-3 rats. Visual function was tested by optokinetic testing and electrophysiologic recording in the superior colliculus. Transplants were analyzed at 54 to 300 days postsurgery by immunohistochemistry for donor and retinal markers. Results: Retina organoids contained multiple retinal cell types, including progenitor populations capable of developing new cones and rods. After transplantation into an immunodeficient rat model of severe RD, the transplanted sheets differentiated, integrated, and produced functional photoreceptors and other retinal cells, according to the longer human developmental timetable. Maturation of the transplanted retinal cells created visual improvements that were measured by optokinetic testing and electrophysiologic recording in the superior colliculus. Immunohistochemistry analysis indicated that the donor cells were synaptically active. Extensive transplant projections could be seen within the host RD retina. Optical coherence tomography imaging monitored long-term transplant growth and survival up to 10 months postsurgery. Conclusions: These data demonstrate that the transplantation of sheets dissected from hESC-derived retina organoids is a potential therapeutic method for restoring vision in advanced stages of RD.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias Humanas/citología , Organoides/citología , Retina/citología , Degeneración Retiniana/terapia , Trasplante de Células Madre , Agudeza Visual/fisiología , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Electrofisiología , Humanos , Microscopía Fluorescente , Nistagmo Optoquinético/fisiología , Organoides/metabolismo , Ratas , Ratas Desnudas , Reacción en Cadena en Tiempo Real de la Polimerasa , Retina/metabolismo , Degeneración Retiniana/diagnóstico por imagen , Degeneración Retiniana/fisiopatología , Tomografía de Coherencia Óptica
12.
Exp Eye Res ; 174: 13-28, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29782826

RESUMEN

Loss of photoreceptors and other retinal cells is a common endpoint in retinal degenerate (RD) diseases that cause blindness. Retinal transplantation is a potential therapy to replace damaged retinal cells and improve vision. In this study, we examined the development of human fetal retinal sheets with or without their retinal pigment epithelium (RPE) transplanted to immunodeficient retinal degenerate rho S334ter-3 rats. Sheets were dissected from fetal human eyes (11-15.7 weeks gestation) and then transplanted to the subretinal space of 24-31 d old RD nude rats. Every month post surgery, eyes were imaged by high-resolution spectral-domain optical coherence tomography (SD-OCT). SD-OCT showed that transplants were placed into the subretinal space and developed laminated areas or rosettes, with clear development of plexiform layers first seen in OCT at 3 months post surgery. Several months later, as could be expected by the much slower development of human cells compared to rat cells, transplant photoreceptors developed inner and later outer segments. Retinal sections were analyzed by immunohistochemistry for human and retinal markers and confirmed the formation of several retinal subtypes within the retinal layers. Transplant cells extended processes and a lot of the cells could also be seen migrating into the host retina. At 5.8-8.6 months post surgery, selected rats were exposed to light flashes and recorded for visual responses in superior colliculus, (visual center in midbrain). Four of seven rats with transplants showed responses to flashes of light in a limited area of superior colliculus. No response with the same dim light intensity was found in age-matched RD controls (non-surgery or sham surgery). In summary, our data showed that human fetal retinal sheets transplanted to the severely disturbed subretinal space of RD nude rats develop mature photoreceptors and other retinal cells, integrate with the host and induce vision improvement.


Asunto(s)
Retina , Degeneración Retiniana/cirugía , Trasplante de Células Madre/métodos , Animales , Biomarcadores/metabolismo , Humanos , Microglía/metabolismo , Neuroglía/metabolismo , Células Fotorreceptoras/patología , Ratas , Retina/citología , Retina/embriología , Retina/metabolismo , Degeneración Retiniana/fisiopatología , Colículos Superiores/fisiología , Tomografía de Coherencia Óptica , Visión Ocular/fisiología
13.
Stem Cells Int ; 2017: 9428176, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28928775

RESUMEN

Dysfunction and death of retinal pigment epithelium (RPE) and or photoreceptors can lead to irreversible vision loss. The eye represents an ideal microenvironment for stem cell-based therapy. It is considered an "immune privileged" site, and the number of cells needed for therapy is relatively low for the area of focused vision (macula). Further, surgical placement of stem cell-derived grafts (RPE, retinal progenitors, and photoreceptor precursors) into the vitreous cavity or subretinal space has been well established. For preclinical tests, assessments of stem cell-derived graft survival and functionality are conducted in animal models by various noninvasive approaches and imaging modalities. In vivo experiments conducted in animal models based on replacing photoreceptors and/or RPE cells have shown survival and functionality of the transplanted cells, rescue of the host retina, and improvement of visual function. Based on the positive results obtained from these animal experiments, human clinical trials are being initiated. Despite such progress in stem cell research, ethical, regulatory, safety, and technical difficulties still remain a challenge for the transformation of this technique into a standard clinical approach. In this review, the current status of preclinical safety and efficacy studies for retinal cell replacement therapies conducted in animal models will be discussed.

15.
Invest Ophthalmol Vis Sci ; 58(1): 614-630, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28129425

RESUMEN

Purpose: To characterize a recently developed model, the retinal degenerate immunodeficient S334ter line-3 rat (SD-Foxn1 Tg(S334ter)3Lav) (RD nude rat), and to test whether transplanted rat fetal retinal sheets can elicit lost responses to light. Methods: National Institutes of Health nude rats (SD-Foxn1 Tg) with normal retina were compared to RD nude rats with and without transplant for morphology and visual function. Retinal sheets from transgenic rats expressing human placental alkaline phosphatase (hPAP) were transplanted into the subretinal space of RD nude rats between postnatal day (P) 26 and P38. Transplant morphology was examined in vivo using optical coherence tomography (OCT). Visual function was assessed by optokinetic (OKN) testing, electroretinogram (ERG), and superior colliculus (SC) electrophysiology. Cryostat sections were analyzed for various retinal/synaptic markers and for the expression of donor hPAP. Results: Optical coherence tomography scans showed the placement and laminar development of retinal sheet transplants in the subretinal space. Optokinetic testing demonstrated a deficit in visual acuity in RD nude rats that was improved after retinal sheet transplantation. No ERG responses were detected in the RD nude rats with or without transplantation. Superior colliculus responses were absent in age-matched control and sham surgery RD nude rats; however, robust light-evoked responses were observed in a specific location in the SC of transplanted RD nude rats. Responsive regions corresponded to the area of transplant placement in the eye. The quality of visual responses correlated with transplant organization and placement. Conclusions: The data suggest that retinal sheet transplants integrate into the host retina of RD nude rats and recover significant visual function.


Asunto(s)
Trasplante de Tejido Fetal/métodos , Recuperación de la Función , Retina/trasplante , Degeneración Retiniana/cirugía , Agudeza Visual , Animales , Modelos Animales de Enfermedad , Electrofisiología , Electrorretinografía , Femenino , Inmunohistoquímica , Masculino , Ratas , Ratas Long-Evans , Ratas Desnudas , Retina/embriología , Retina/fisiopatología , Degeneración Retiniana/patología , Degeneración Retiniana/fisiopatología , Donantes de Tejidos , Tomografía de Coherencia Óptica
16.
Graefes Arch Clin Exp Ophthalmol ; 252(7): 1079-92, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24817311

RESUMEN

PURPOSE: The goal of this study was to develop an immunodeficient rat model of retinal degeneration (RD nude rats) that will not reject transplanted human cells. METHODS: SD-Tg(S334ter)3Lav females homozygous for a mutated mouse rhodopsin transgene were mated with NTac:NIH-Whn (NIH nude) males homozygous for the Foxn1 (rnu) allele. Through selective breeding, a new stock, SD-Foxn1 Tg(S334ter)3Lav (RD nude) was generated such that all animals were homozygous for the Foxn1 (rnu) allele and either homo- or hemizygous for the S334ter transgene. PCR-based assays for both the Foxn1 (rnu) mutation and the S334ter transgene were developed for accurate genotyping. Immunodeficiency was tested by transplanting sheets of hESC-derived neural progenitor cells to the subretinal space of RD nude rats, and, as a control, NIH nude rats. Rats were killed between 8 and 184 days after surgery, and eye sections were analyzed for human, neuronal, and glial markers. RESULTS: After transplantation to RD nude and to NIH nude rats, hESC-derived neural progenitor cells differentiated to neuronal and glial cells, and migrated extensively from the transplant sheets throughout the host retina. Migration was more extensive in RD nude than in NIH nude rats. Already 8 days after transplantation, donor neuronal processes were found in the host inner plexiform layer. In addition, host glial cells extended processes into the transplants. The host retina showed the same photoreceptor degeneration pattern as in the immunocompetent SD-Tg(S334ter)3Lav rats. Recipients survived well after surgery. CONCLUSIONS: This new rat model is useful for testing the effect of human cell transplantation on the restoration of vision without interference of immunosuppression.


Asunto(s)
Modelos Animales de Enfermedad , Células Madre Embrionarias/trasplante , Xenoinjertos , Tolerancia Inmunológica/fisiología , Síndromes de Inmunodeficiencia/terapia , Degeneración Retiniana/terapia , Animales , Biomarcadores/metabolismo , Supervivencia Celular/fisiología , Proteínas del Ojo/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Factores de Transcripción Forkhead/genética , Técnicas de Genotipaje , Humanos , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/metabolismo , Síndromes de Inmunodeficiencia/patología , Terapia de Inmunosupresión , Masculino , Microscopía Confocal , Ratas , Ratas Desnudas , Ratas Sprague-Dawley , Ratas Transgénicas , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Trasplante de Células Madre
17.
Prog Retin Eye Res ; 31(6): 661-87, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22771454

RESUMEN

Retinal diseases such as age-related macular degeneration (ARMD) and retinitis pigmentosa (RP) affect millions of people. Replacing lost cells with new cells that connect with the still functional part of the host retina might repair a degenerating retina and restore eyesight to an unknown extent. A unique model, subretinal transplantation of freshly dissected sheets of fetal-derived retinal progenitor cells, combined with its retinal pigment epithelium (RPE), has demonstrated successful results in both animals and humans. Most other approaches are restricted to rescue endogenous retinal cells of the recipient in earlier disease stages by a 'nursing' role of the implanted cells and are not aimed at neural retinal cell replacement. Sheet transplants restore lost visual responses in several retinal degeneration models in the superior colliculus (SC) corresponding to the location of the transplant in the retina. They do not simply preserve visual performance - they increase visual responsiveness to light. Restoration of visual responses in the SC can be directly traced to neural cells in the transplant, demonstrating that synaptic connections between transplant and host contribute to the visual improvement. Transplant processes invade the inner plexiform layer of the host retina and form synapses with presumable host cells. In a Phase II trial of RP and ARMD patients, transplants of retina together with its RPE improved visual acuity. In summary, retinal progenitor sheet transplantation provides an excellent model to answer questions about how to repair and restore function of a degenerating retina. Supply of fetal donor tissue will always be limited but the model can set a standard and provide an informative base for optimal cell replacement therapies such as embryonic stem cell (ESC)-derived therapy.


Asunto(s)
Retina/trasplante , Degeneración Retiniana/cirugía , Retinitis Pigmentosa/cirugía , Trasplante de Células Madre/métodos , Visión Ocular , Animales , Trasplante de Tejido Fetal , Humanos , Retina/fisiopatología , Degeneración Retiniana/fisiopatología , Retinitis Pigmentosa/fisiopatología
18.
PLoS One ; 6(1): e14499, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21249129

RESUMEN

BACKGROUND: As human embryonic stem cell (hESC) lines can be derived via multiple means, it is important to determine particular characteristics of individual lines that may dictate the applications to which they are best suited. The objective of this work was to determine points of equivalence and differences between conventionally-derived hESC and parthenote-derived hESC lines (phESC) in the undifferentiated state and during neural differentiation. METHODOLOGY/PRINCIPAL FINDINGS: hESC and phESC were exposed to the same expansion conditions and subsequent neural and retinal pigmented epithelium (RPE) differentiation protocols. Growth rates and gross morphology were recorded during expansion. RTPCR for developmentally relevant genes and global DNA methylation profiling were used to compare gene expression and epigenetic characteristics. Parthenote lines proliferated more slowly than conventional hESC lines and yielded lower quantities of less mature differentiated cells in a neural progenitor cell (NPC) differentiation protocol. However, the cell lines performed similarly in a RPE differentiation protocol. The DNA methylation analysis showed similar general profiles, but the two cell types differed in methylation of imprinted genes. There were no major differences in gene expression between the lines before differentiation, but when differentiated into NPCs, the two cell types differed in expression of extracellular matrix (ECM) genes. CONCLUSIONS/SIGNIFICANCE: These data show that hESC and phESC are similar in the undifferentiated state, and both cell types are capable of differentiation along neural lineages. The differences between the cell types, in proliferation and extent of differentiation, may be linked, in part, to the observed differences in ECM synthesis and methylation of imprinted genes.


Asunto(s)
Células Madre Embrionarias/citología , Células-Madre Neurales/citología , Partenogénesis , Diferenciación Celular , Proliferación Celular , Metilación de ADN , Proteínas de la Matriz Extracelular/genética , Expresión Génica , Humanos , Neuronas
19.
Exp Eye Res ; 91(5): 727-38, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20804751

RESUMEN

The aim of this study was to compare glial-derived neurotrophic factor (GDNF) treatment with brain-derived neurotrophic factor (BDNF) treatment of retinal transplants on restoration of visual responses in the superior colliculus (SC) of the S334ter line 3 rat model of rapid retinal degeneration (RD). RD rats (age 4-6 weeks) received subretinal transplants of intact sheets of fetal retina expressing the marker human placental alkaline phosphatase (hPAP). Experimental groups included: (1) untreated retinal sheet transplants, (2) GDNF-treated transplants, (3) BDNF-treated transplants, (4) none surgical, age-matched RD rats, (5) sham surgery RD controls, (6) progenitor cortex transplant RD controls, and (7) normal pigmented rat controls. At 2-8 months after transplantation, multi-unit visual responses were recorded from the SC using a 40 ms full-field stimulus (-5.9 to +1 log cd/m(2)) after overnight dark-adaptation. Responses were analyzed for light thresholds, spike counts, response latencies, and location within the SC. Transplants were grouped into laminated or rosetted (more disorganized) transplants based on histological analysis. Visual stimulation of control RD rats evoked no responses. In RD rats with retinal transplants, a small area of the SC corresponding to the position of the transplant in the host retina, responded to light stimulation between -4.5 and -0.08 log cd/m(2), whereas the light threshold of normal rats was at or below -5 log cd/m(2) all over the SC. Overall, responses in the SC in rats with laminated transplants had lower response thresholds and were distributed over a wider area than rats with rosetted transplants. BDNF treatment improved responses (spike counts, light thresholds and responsive areas) of rats with laminated transplants whereas GDNF treatment improved responses from rats with both laminated and rosetted (more disorganized) transplants. In conclusion, treatment of retinal transplants with GDNF and BDNF improved the restoration of visual responses in RD rats; and GDNF appears to exert greater overall restoration than BDNF.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Trasplante de Tejido Fetal , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Retina/fisiología , Retina/trasplante , Degeneración Retiniana/cirugía , Animales , Animales Modificados Genéticamente , Electrofisiología , Potenciales Evocados Visuales/fisiología , Femenino , Masculino , Microesferas , Estimulación Luminosa , Ratas , Retina/citología , Degeneración Retiniana/fisiopatología , Células Madre/efectos de los fármacos , Colículos Superiores/fisiología
20.
J Neurosci Methods ; 190(1): 63-70, 2010 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-20447416

RESUMEN

PURPOSE: To develop three-dimensional (3D) constructs of retinal pigment epithelium (RPE) and early retina progenitor cells from human embryonic stem cells (hESCs). METHODS: 3D tissue constructs were developed by culturing hESC-derived neural retinal progenitors in a matrix on top of hESC-derived RPE cells in a cell culture insert. An osmolarity gradient maintained the nutrition of the 3D cell constructs. Cross-sections through hESC-derived tissue constructs were characterized by immunohistochemistry for various transcription factors and cell markers. RESULTS: hESC-derived tissue constructs expressed transcription factors characteristic of retinal development, such as pax6, Otx2, Chx10, retinal RAX; Brn3b (necessary for differentiation of retinal ganglion cells); and crx and nrl (role in photoreceptor development). Many cells expressed neuronal markers including nestin, beta-tubulin and microtubule-associated proteins. CONCLUSIONS: This study shows for the first time that 3D early retinal progenitor tissue constructs can be derived from hESCs.


Asunto(s)
Células Madre Embrionarias/fisiología , Retina/fisiología , Epitelio Pigmentado de la Retina/fisiología , Ingeniería de Tejidos/métodos , Animales , Técnicas de Cultivo de Célula , Línea Celular , Proliferación Celular , Matriz Extracelular , Humanos , Inmunohistoquímica , Ratones , Neuronas/fisiología , Andamios del Tejido , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA