Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Cardiovasc Med ; 7: 623922, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33569394

RESUMEN

Aim: Dysfunction of the cardiac ryanodine receptor (RyR2) is an almost ubiquitous finding in animal models of heart failure (HF) and results in abnormal Ca2+ release in cardiomyocytes that contributes to contractile impairment and arrhythmias. We tested whether exercise training (ET), as recommended by current guidelines, had the potential to stabilize RyR2-dependent Ca2+ release in rats with post-myocardial infarction HF. Materials and Methods: We subjected male Wistar rats to left coronary artery ligation or sham operations. After 1 week, animals were characterized by echocardiography and randomized to high-intensity interval ET on treadmills or to sedentary behavior (SED). Running speed was adjusted based on a weekly VO2max test. We repeated echocardiography after 5 weeks of ET and harvested left ventricular cardiomyocytes for analysis of RyR2-dependent systolic and spontaneous Ca2+ release. Phosphoproteins were analyzed by Western blotting, and beta-adrenoceptor density was quantified by radioligand binding. Results: ET increased VO2max in HF-ET rats to 127% of HF-SED (P < 0.05). This coincided with attenuated spontaneous SR Ca2+ release in left ventricular cardiomyocytes from HF-ET but also reduced Ca2+ transient amplitude and slowed Ca2+ reuptake during adrenoceptor activation. However, ventricular diameter and fractional shortening were unaffected by ET. Analysis of Ca2+ homeostasis and major proteins involved in the regulation of SR Ca2+ release and reuptake could not explain the attenuated spontaneous SR Ca2+ release or reduced Ca2+ transient amplitude. Importantly, measurements of beta-adrenoceptors showed a normalization of beta1-adrenoceptor density and beta1:beta2-adrenoceptor ratio in HF-ET. Conclusion: ET increased aerobic capacity in post-myocardial infarction HF rats and stabilized RyR2-dependent Ca2+ release. Our data show that these effects of ET can be gained without major alterations in SR Ca2+ regulatory proteins and indicate that future studies should include upstream parts of the sympathetic signaling pathway.

2.
Cardiovasc Res ; 116(1): 78-90, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30949686

RESUMEN

AIMS: Ankyrin B (AnkB) is an adaptor protein that assembles Na+/K+-ATPase (NKA) and Na+/Ca2+ exchanger (NCX) in the AnkB macromolecular complex. Loss-of-function mutations in AnkB cause the AnkB syndrome in humans, characterized by ventricular arrhythmias and sudden cardiac death. It is unclear to what extent NKA binding to AnkB allows regulation of local Na+ and Ca2+ domains and hence NCX activity. METHODS AND RESULTS: To investigate the role of NKA binding to AnkB in cardiomyocytes, we synthesized a disruptor peptide (MAB peptide) and its AnkB binding ability was verified by pulldown experiments. As opposed to control, the correlation between NKA and NCX currents was abolished in adult rat ventricular myocytes dialyzed with MAB peptide, as well as in cardiomyocytes from AnkB+/- mice. Disruption of NKA from AnkB (with MAB peptide) increased NCX-sensed cytosolic Na+ concentration, reduced Ca2+ extrusion through NCX, and increased frequency of Ca2+ sparks and Ca2+ waves without concomitant increase in Ca2+ transient amplitude or SR Ca2+ load, suggesting an effect in local Ca2+ domains. Selective inhibition of the NKAα2 isoform abolished both the correlation between NKA and NCX currents and the increased rate of Ca2+ sparks and waves following NKA/AnkB disruption, suggesting that an AnkB/NKAα2/NCX domain controls Ca2+ fluxes in cardiomyocytes. CONCLUSION: NKA binding to AnkB allows ion regulation in a local domain, and acute disruption of the NKA/AnkB interaction using disruptor peptides lead to increased rate of Ca2+ sparks and waves. The functional effects were mediated through the NKAα2 isoform. Disruption of the AnkB/NKA/NCX domain could be an important pathophysiological mechanism in the AnkB syndrome.


Asunto(s)
Ancirinas/metabolismo , Señalización del Calcio , Miocitos Cardíacos/enzimología , Intercambiador de Sodio-Calcio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Ancirinas/deficiencia , Ancirinas/genética , Acoplamiento Excitación-Contracción , Masculino , Potenciales de la Membrana , Ratones Noqueados , Contracción Miocárdica , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Ratas Wistar , Factores de Tiempo
3.
Proteomics ; 17(17-18)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28755400

RESUMEN

The sodium (Na+ )-calcium (Ca2+ ) exchanger 1 (NCX1) is an antiporter membrane protein encoded by the SLC8A1 gene. In the heart, it maintains cytosolic Ca2+ homeostasis, serving as the primary mechanism for Ca2+ extrusion during relaxation. Dysregulation of NCX1 is observed in end-stage human heart failure. In this study, we used affinity purification coupled with MS in rat left ventricle lysates to identify novel NCX1 interacting proteins in the heart. Two screens were conducted using: (1) anti-NCX1 against endogenous NCX1 and (2) anti-His (where His is histidine) with His-trigger factor-NCX1cyt recombinant protein as bait. The respective methods identified 112 and 350 protein partners, of which several were known NCX1 partners from the literature, and 29 occurred in both screens. Ten novel protein partners (DYRK1A, PPP2R2A, SNTB1, DMD, RABGGTA, DNAJB4, BAG3, PDE3A, POPDC2, STK39) were validated for binding to NCX1, and two partners (DYRK1A, SNTB1) increased NCX1 activity when expressed in HEK293 cells. A cardiac NCX1 protein-protein interaction map was constructed. The map was highly connected, containing distinct clusters of proteins with different biological functions, where "cell communication" and "signal transduction" formed the largest clusters. The NCX1 interactome was also significantly enriched with proteins/genes involved in "cardiovascular disease" which can be explored as novel drug targets in future research.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Corazón/fisiología , Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , Intercambiador de Sodio-Calcio/metabolismo , Animales , Calcio/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Masculino , Ratas , Ratas Wistar , Transducción de Señal , Sodio/metabolismo
4.
Biochem J ; 473(15): 2413-23, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27247424

RESUMEN

NCX1 (Na(+)/Ca(2+) exchanger 1) is an important regulator of intracellular Ca(2+) and a potential therapeutic target for brain ischaemia and for diastolic heart failure with preserved ejection fraction. PLM (phospholemman), a substrate for protein kinases A and C, has been suggested to regulate NCX1 activity. However, although several studies have demonstrated that binding of phosphorylated PLM (pSer(68)-PLM) leads to NCX1 inhibition, other studies have failed to demonstrate a functional interaction of these proteins. In the present study, we aimed to analyse the biological function of the pSer(68)-PLM-NCX1 interaction by developing high-affinity blocking peptides. PLM was observed to co-fractionate and co-immunoprecipitate with NCX1 in rat left ventricle, and in co-transfected HEK (human embryonic kidney)-293 cells. For the first time, the NCX1-PLM interaction was also demonstrated in the brain. PLM binding sites on NCX1 were mapped to two regions by peptide array assays, containing the previously reported PASKT and QKHPD motifs. Conversely, the two NCX1 regions bound identical sequences in the cytoplasmic domain of PLM, suggesting that NCX1-PASKT and NCX1-QKHPD might bind to each PLM monomer. Using two-dimensional peptide arrays of the native NCX1 sequence KHPDKEIEQLIELANYQVLS revealed that double substitution of tyrosine for positions 1 and 4 (K1Y and D4Y) enhanced pSer(68)-PLM binding 8-fold. The optimized peptide blocked binding of NCX1-PASKT and NCX1-QKHPD to PLM and reversed PLM(S68D) inhibition of NCX1 activity (both forward and reverse mode) in HEK-293 cells. Altogether our data indicate that PLM interacts directly with NCX1 and inhibits NCX1 activity when phosphorylated at Ser(68).


Asunto(s)
Proteínas de la Membrana/farmacología , Péptidos/farmacología , Fosfoproteínas/farmacología , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Animales , Sitios de Unión , Encéfalo/metabolismo , Células HEK293 , Humanos , Miocardio/metabolismo , Fosforilación , Ratas , Intercambiador de Sodio-Calcio/metabolismo
5.
J Biol Chem ; 291(9): 4561-79, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26668322

RESUMEN

The sodium (Na(+))-calcium (Ca(2+)) exchanger 1 (NCX1) is an important regulator of intracellular Ca(2+) homeostasis. Serine 68-phosphorylated phospholemman (pSer-68-PLM) inhibits NCX1 activity. In the context of Na(+)/K(+)-ATPase (NKA) regulation, pSer-68-PLM is dephosphorylated by protein phosphatase 1 (PP1). PP1 also associates with NCX1; however, the molecular basis of this association is unknown. In this study, we aimed to analyze the mechanisms of PP1 targeting to the NCX1-pSer-68-PLM complex and hypothesized that a direct and functional NCX1-PP1 interaction is a prerequisite for pSer-68-PLM dephosphorylation. Using a variety of molecular techniques, we show that PP1 catalytic subunit (PP1c) co-localized, co-fractionated, and co-immunoprecipitated with NCX1 in rat cardiomyocytes, left ventricle lysates, and HEK293 cells. Bioinformatic analysis, immunoprecipitations, mutagenesis, pulldown experiments, and peptide arrays constrained PP1c anchoring to the K(I/V)FF motif in the first Ca(2+) binding domain (CBD) 1 in NCX1. This binding site is also partially in agreement with the extended PP1-binding motif K(V/I)FF-X5-8Φ1Φ2-X8-9-R. The cytosolic loop of NCX1, containing the K(I/V)FF motif, had no effect on PP1 activity in an in vitro assay. Dephosphorylation of pSer-68-PLM in HEK293 cells was not observed when NCX1 was absent, when the K(I/V)FF motif was mutated, or when the PLM- and PP1c-binding sites were separated (mimicking calpain cleavage of NCX1). Co-expression of PLM and NCX1 inhibited NCX1 current (both modes). Moreover, co-expression of PLM with NCX1(F407P) (mutated K(I/V)FF motif) resulted in the current being completely abolished. In conclusion, NCX1 is a substrate-specifying PP1c regulator protein, indirectly regulating NCX1 activity through pSer-68-PLM dephosphorylation.


Asunto(s)
Modelos Animales de Enfermedad , Insuficiencia Cardíaca/metabolismo , Proteínas de la Membrana/metabolismo , Miocitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatasa 1/metabolismo , Procesamiento Proteico-Postraduccional , Intercambiador de Sodio-Calcio/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Biología Computacional , Células HEK293 , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/patología , Humanos , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Proteína Fosfatasa 1/química , Proteína Fosfatasa 1/genética , Ratas Wistar , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Intercambiador de Sodio-Calcio/química , Intercambiador de Sodio-Calcio/genética , Especificidad por Sustrato
6.
J Biol Chem ; 289(49): 33984-98, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25336645

RESUMEN

Cardiac sodium (Na(+))-calcium (Ca(2+)) exchanger 1 (NCX1) is central to the maintenance of normal Ca(2+) homeostasis and contraction. Studies indicate that the Ca(2+)-activated protease calpain cleaves NCX1. We hypothesized that calpain is an important regulator of NCX1 in response to pressure overload and aimed to identify molecular mechanisms and functional consequences of calpain binding and cleavage of NCX1 in the heart. NCX1 full-length protein and a 75-kDa NCX1 fragment along with calpain were up-regulated in aortic stenosis patients and rats with heart failure. Patients with coronary artery disease and sham-operated rats were used as controls. Calpain co-localized, co-fractionated, and co-immunoprecipitated with NCX1 in rat cardiomyocytes and left ventricle lysate. Immunoprecipitations, pull-down experiments, and extensive use of peptide arrays indicated that calpain domain III anchored to the first Ca(2+) binding domain in NCX1, whereas the calpain catalytic region bound to the catenin-like domain in NCX1. The use of bioinformatics, mutational analyses, a substrate competitor peptide, and a specific NCX1-Met(369) antibody identified a novel calpain cleavage site at Met(369). Engineering NCX1-Met(369) into a tobacco etch virus protease cleavage site revealed that specific cleavage at Met(369) inhibited NCX1 activity (both forward and reverse mode). Finally, a short peptide fragment containing the NCX1-Met(369) cleavage site was modeled into the narrow active cleft of human calpain. Inhibition of NCX1 activity, such as we have observed here following calpain-induced NCX1 cleavage, might be beneficial in pathophysiological conditions where increased NCX1 activity contributes to cardiac dysfunction.


Asunto(s)
Estenosis de la Válvula Aórtica/metabolismo , Calpaína/metabolismo , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Anciano , Secuencia de Aminoácidos , Animales , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/patología , Sitios de Unión , Calpaína/genética , Femenino , Células HEK293 , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/patología , Humanos , Masculino , Datos de Secuencia Molecular , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/patología , Cultivo Primario de Células , Unión Proteica , Proteolisis , Ratas , Ratas Wistar , Intercambiador de Sodio-Calcio/química , Intercambiador de Sodio-Calcio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA