Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Am J Biol Anthropol ; 181 Suppl 76: 118-144, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36794631

RESUMEN

Structural variants (SVs)-including duplications, deletions, and inversions of DNA-can have significant genomic and functional impacts but are technically difficult to identify and assay compared with single-nucleotide variants. With the aid of new genomic technologies, it has become clear that SVs account for significant differences across and within species. This phenomenon is particularly well-documented for humans and other primates due to the wealth of sequence data available. In great apes, SVs affect a larger number of nucleotides than single-nucleotide variants, with many identified SVs exhibiting population and species specificity. In this review, we highlight the importance of SVs in human evolution by (1) how they have shaped great ape genomes resulting in sensitized regions associated with traits and diseases, (2) their impact on gene functions and regulation, which subsequently has played a role in natural selection, and (3) the role of gene duplications in human brain evolution. We further discuss how to incorporate SVs in research, including the strengths and limitations of various genomic approaches. Finally, we propose future considerations in integrating existing data and biospecimens with the ever-expanding SV compendium propelled by biotechnology advancements.


Asunto(s)
Variación Estructural del Genoma , Hominidae , Animales , Humanos , Genoma , Genómica , Hominidae/genética , Primates/genética , Nucleótidos
2.
eNeuro ; 8(6)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34725102

RESUMEN

Tracking and quantifying the abundance and location of cells in the developing brain is essential in neuroscience research, enabling a greater understanding of mechanisms underlying nervous system morphogenesis. Widely used experimental methods to quantify cells labeled with fluorescent markers, such as immunohistochemistry (IHC), in situ hybridization, and expression of transgenes via stable lines or transient in utero electroporations (IUEs), depend on accurate and consistent quantification of images. Current methods to quantify fluorescently-labeled cells rely on labor-intensive manual counting approaches, such as the Fiji plugin Cell Counter, which requires custom macros to enable higher-throughput analyses. Here, we present RapID Cell Counter, a semi-automated cell-counting tool with an easy-to-implement graphical user interface (GUI), which facilitates quick and consistent quantifications of cell density within user-defined boundaries that can be divided into equally-partitioned segments. Compared with the standard manual counting approach, we show that RapID matched accuracy and consistency and only required ∼10% of user time relative to manual counting methods, when quantifying the distribution of fluorescently-labeled neurons in mouse IUE experiments. Using RapID, we recapitulated previously published work focusing on two genes, SRGAP2 and CUL5, important for projection neuron (PN) migration in the neocortex and used it to quantify PN displacement in a mouse knock-out model of RBX2 Moreover, RapID is capable of quantifying other cell types in the brain with complex cell morphologies, including astrocytes and dopaminergic neurons. We propose RapID as an efficient method for neuroscience researchers to process fluorescently-labeled brain images in a consistent, accurate, and mid-throughput manner.


Asunto(s)
Recuento de Células/métodos , Neocórtex , Neuronas , Animales , Astrocitos , Gráficos por Computador , Proteínas Activadoras de GTPasa , Ratones , Morfogénesis , Neocórtex/diagnóstico por imagen , Interfaz Usuario-Computador
3.
PLoS Genet ; 14(5): e1007298, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29723195

RESUMEN

Ambient temperature is a critical environmental factor for all living organisms. It was likely an important selective force as modern humans recently colonized temperate and cold Eurasian environments. Nevertheless, as of yet we have limited evidence of local adaptation to ambient temperature in populations from those environments. To shed light on this question, we exploit the fact that humans are a cosmopolitan species that inhabit territories under a wide range of temperatures. Focusing on cold perception-which is central to thermoregulation and survival in cold environments-we show evidence of recent local adaptation on TRPM8. This gene encodes for a cation channel that is, to date, the only temperature receptor known to mediate an endogenous response to moderate cold. The upstream variant rs10166942 shows extreme population differentiation, with frequencies that range from 5% in Nigeria to 88% in Finland (placing this SNP in the 0.02% tail of the FST empirical distribution). When all populations are jointly analyzed, allele frequencies correlate with latitude and temperature beyond what can be explained by shared ancestry and population substructure. Using a Bayesian approach, we infer that the allele originated and evolved neutrally in Africa, while positive selection raised its frequency to different degrees in Eurasian populations, resulting in allele frequencies that follow a latitudinal cline. We infer strong positive selection, in agreement with ancient DNA showing high frequency of the allele in Europe 3,000 to 8,000 years ago. rs10166942 is important phenotypically because its ancestral allele is protective of migraine. This debilitating disorder varies in prevalence across human populations, with highest prevalence in individuals of European descent-precisely the population with the highest frequency of rs10166942 derived allele. We thus hypothesize that local adaptation on previously neutral standing variation may have contributed to the genetic differences that exist in the prevalence of migraine among human populations today.


Asunto(s)
Adaptación Fisiológica/genética , Frío , Polimorfismo de Nucleótido Simple , Canales Catiónicos TRPM/genética , África , Asia , Teorema de Bayes , Europa (Continente) , Perfilación de la Expresión Génica , Frecuencia de los Genes , Genética de Población/estadística & datos numéricos , Genotipo , Humanos , Desequilibrio de Ligamiento , Selección Genética
4.
Parasitol Int ; 67(4): 476-480, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29609036

RESUMEN

Leishmania infantum is responsible for human and canine leishmaniasis in the Mediterranean basin, where the major vector is Phlebotomus perniciosus. Because isolation of sufficient parasites from the sand fly gut is technically challenging, axenic cultivation of promastigotes is routinely used to obtain material for biochemical and genetic analyses. Here, we report the use of Spliced Leader RNA-seq (SL-seq) to compare transcript abundance in cultured promastigotes and those obtained from the whole midgut of the sand fly 5 days after infection. SL-seq allows for amplification of RNA from the parasite avoiding contamination with RNA from the gut of the insect. The study has been performed by means of a single technical replicate comparing pools of samples obtained from sand fly-derived (sfPro) and axenic culture promastigotes (acPro). Although there was a moderate correlation (R2 = 0.83) in gene expression, 793 genes showed significantly different (≥2-fold, p <0.05) mRNA levels in sand fly-derived promastigotes and in culture, of which 31 were up-regulated ≥8-fold (p < 10-8 in most cases). These included several genes that are typically up-regulated during metacyclogenesis, suggesting that sand fly-derived promastigotes contain a substantial number of metacyclics, and/or that their differentiation status as metacyclics is more advanced in these populations. Infection experiments and studies evaluating the proportion of metacyclic promastigotes in culture and within the sand fly gut, previously reported by us, support the last hypothesis.


Asunto(s)
Leishmania infantum/genética , Leishmania infantum/aislamiento & purificación , Estadios del Ciclo de Vida/genética , Phlebotomus/parasitología , Animales , Cultivo Axénico/métodos , Vectores de Enfermedades , Perfilación de la Expresión Génica/métodos , Intestinos/parasitología , Leishmania infantum/fisiología , Leishmaniasis/etnología , Leishmaniasis/parasitología , Phlebotomus/anatomía & histología , Análisis de Secuencia de ARN/métodos
5.
Tuberculosis (Edinb) ; 95(2): 142-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25613812

RESUMEN

High-resolution three-dimensional structures of essential Mycobacterium tuberculosis (Mtb) proteins provide templates for TB drug design, but are available for only a small fraction of the Mtb proteome. Here we evaluate an intra-genus "homolog-rescue" strategy to increase the structural information available for TB drug discovery by using mycobacterial homologs with conserved active sites. Of 179 potential TB drug targets selected for x-ray structure determination, only 16 yielded a crystal structure. By adding 1675 homologs from nine other mycobacterial species to the pipeline, structures representing an additional 52 otherwise intractable targets were solved. To determine whether these homolog structures would be useful surrogates in TB drug design, we compared the active sites of 106 pairs of Mtb and non-TB mycobacterial (NTM) enzyme homologs with experimentally determined structures, using three metrics of active site similarity, including superposition of continuous pharmacophoric property distributions. Pair-wise structural comparisons revealed that 19/22 pairs with >55% overall sequence identity had active site Cα RMSD <1 Å, >85% side chain identity, and ≥80% PSAPF (similarity based on pharmacophoric properties) indicating highly conserved active site shape and chemistry. Applying these results to the 52 NTM structures described above, 41 shared >55% sequence identity with the Mtb target, thus increasing the effective structural coverage of the 179 Mtb targets over three-fold (from 9% to 32%). The utility of these structures in TB drug design can be tested by designing inhibitors using the homolog structure and assaying the cognate Mtb enzyme; a promising test case, Mtb cytidylate kinase, is described. The homolog-rescue strategy evaluated here for TB is also generalizable to drug targets for other diseases.


Asunto(s)
Antituberculosos/farmacología , Diseño de Fármacos , Terapia Molecular Dirigida/métodos , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/química , Proteínas Bacterianas/química , Biología Computacional/métodos , Cristalografía por Rayos X/métodos , Bases de Datos de Proteínas , Activación Enzimática , Genómica/métodos , Humanos , Modelos Moleculares , Mycobacterium/clasificación , Mycobacterium/enzimología , Mycobacterium/genética , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Relación Estructura-Actividad Cuantitativa , Especificidad de la Especie
6.
Methods Mol Biol ; 1201: 207-19, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25388116

RESUMEN

High-throughput sequencing of cDNA copies of mRNA (RNA-seq) provides a digital read-out of mRNA levels over several orders of magnitude, as well as mapping the transcripts to the nucleotide level. Here we describe an RNA-seq approach that exploits the 39-nucleotide mini-exon or spliced leader (SL) sequence found at the 5' end of all Leishmania (and other trypanosomatid) mRNAs.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Leishmania/genética , ARN Mensajero , Análisis de Secuencia de ARN/métodos , Regulación de la Expresión Génica , Reacción en Cadena de la Polimerasa/métodos , ARN Mensajero/genética , ARN Protozoario , ARN Lider Empalmado
7.
Mol Biochem Parasitol ; 196(1): 9-11, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25064607

RESUMEN

Base J is a DNA modification found in the genome of Trypanosoma brucei and all other kinetoplastids analyzed, where it replaces a small fraction of Ts, mainly in telomeric and chromosome-internal transcription initiation and termination regions. The synthesis of base J is a two-step process whereby a specific T is converted to HOMedU (hydroxymethyldeoxyuridine) and subsequently glucosylated to generate J. The thymidine hydroxylases (JPB1 and JBP2) that catalyze the first step have been characterized, but the identity of the glucosyltransferase catalyzing the second step has proven elusive. Recent bioinformatic analysis by Iyer et al. (Nucleic Acids Res 2013;41:7635) suggested that Tb927.10.6900 encodes the glucosyltransferase (HmdUGT) responsible for converting HOMedU to J in T. brucei. We now present experimental evidence to validate this hypothesis; null mutants of Tb927.10.6900 are unable to synthesize base J. Orthologues from related kinetoplastids show only modest conservation, with several insertion sequences found in those from Leishmania and related genera.


Asunto(s)
Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Timina/análogos & derivados , Timina/metabolismo , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/metabolismo , Eliminación de Gen , Redes y Vías Metabólicas/genética , Trypanosoma brucei brucei/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA