Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 137: 111356, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33561649

RESUMEN

All the plants and their secondary metabolites used in the present study were obtained from Ayurveda, with historical roots in the Indian subcontinent. The selected secondary metabolites have been experimentally validated and reported as potent antiviral agents against genetically-close human viruses. The plants have also been used as a folk medicine to treat cold, cough, asthma, bronchitis, and severe acute respiratory syndrome in India and across the globe since time immemorial. The present study aimed to assess the repurposing possibility of potent antiviral compounds with SARS-CoV-2 target proteins and also with host-specific receptor and activator protease that facilitates the viral entry into the host body. Molecular docking (MDc) was performed to study molecular affinities of antiviral compounds with aforesaid target proteins. The top-scoring conformations identified through docking analysis were further validated by 100 ns molecular dynamic (MD) simulation run. The stability of the conformation was studied in detail by investigating the binding free energy using MM-PBSA method. Finally, the binding affinities of all the compounds were also compared with a reference ligand, remdesivir, against the target protein RdRp. Additionally, pharmacophore features, 3D structure alignment of potent compounds and Bayesian machine learning model were also used to support the MDc and MD simulation. Overall, the study emphasized that curcumin possesses a strong binding ability with host-specific receptors, furin and ACE2. In contrast, gingerol has shown strong interactions with spike protein, and RdRp and quercetin with main protease (Mpro) of SARS-CoV-2. In fact, all these target proteins play an essential role in mediating viral replication, and therefore, compounds targeting aforesaid target proteins are expected to block the viral replication and transcription. Overall, gingerol, curcumin and quercetin own multitarget binding ability that can be used alone or in combination to enhance therapeutic efficacy against COVID-19. The obtained results encourage further in vitro and in vivo investigations and also support the traditional use of antiviral plants preventively.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Catecoles/farmacología , Curcumina/farmacología , Alcoholes Grasos/farmacología , Medicina Ayurvédica/métodos , Quercetina/farmacología , SARS-CoV-2 , Antivirales/farmacología , Reposicionamiento de Medicamentos/métodos , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Proteínas Virales/antagonistas & inhibidores
2.
J Mol Struct ; 1228: 129433, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33071352

RESUMEN

Traditional medicines contain natural products (NPs) as main ingredient which always give new direction and paths to develop new advanced medicines. In the COVID-19 pandemic, NPs can be used or can help to find new compound against it. The SARS coronavirus-2 main protease (SARS CoV-2 Mpro) enzyme, arbitrate viral replication and transcription, is target here. The study show that, from the electronic features and binding affinity of all the NPs with the enzyme, the compounds with higher hydrophobicity and lower flexibility can be more favorable inhibitor. More than fifty NPs were screened for the target and one terpenoid (T3) from marine sponge Cacospongia mycofijiensis shows excellent SARS CoV-2 Mpro inhibitory activity in comparison with known peptide based inhibitors. The molecular dynamics simulation studies of the terpenoids with the protein indicates that the complex is stable and hydrogen bonds are involved during the complexation. Considering binding affinity, bioavailability, pharmacokinetics and toxicity of the compounds, it is proposed that the NP T3 can act as a potential drug candidate against COVID-19 virus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...