RESUMEN
The discovery of cell-free fetal DNA fragments in the maternal plasma initiated a novel testing method in prenatal care, called non-invasive prenatal screening (NIPS). One of the limitations of NIPS is the necessity for a sufficient proportion of fetal fragments in the analyzed circulating DNA mixture (fetal fraction), otherwise, the sample is uninterpretable. We present the effect of gestational age, maternal body mass index (BMI), and maternal age on the fetal fraction (FF) of the sample. We retrospectively analyzed data from 5543 pregnant women with a single male fetus who underwent NIPS from which 189 samples received a repeat testing due to an insufficient FF. We showed the relationship between the failure rate of the samples after the repeated analysis, the FF, and the gestational age at the first sampling. Next, we found that different maternal BMI categories affect the FF and thus the chance of an informative redraw. A better understanding of the factors affecting the FF will reduce the number of non-informative calls from repeated analyzes. In this study, we provide helpful information to clinicians on how to approach non-informative analyses.
Asunto(s)
Ácidos Nucleicos Libres de Células , Feto , Humanos , Embarazo , Masculino , Femenino , Edad Gestacional , Índice de Masa Corporal , Estudios Retrospectivos , Edad Materna , Diagnóstico Prenatal/métodos , AneuploidiaRESUMEN
Until recently, mainly DNA sequencing has been used to identify variants within the gene coding for homogentisate dioxygenase (HGD, 3q13.33) that cause alkaptonuria (AKU), an autosomal recessive inborn error of metabolism of tyrosine. In order to identify possible larger genomic deletions we have developed a novel Multiplex Ligation-dependent Probe Amplification (MLPA) assay specific for this gene (HGD-MLPA) and tested it successfully in healthy controls and in patients carrying two known previously identified HGD deletions. Subsequently, we analysed 22 AKU patients in whom only one or none classical HGD variant was found by sequencing. Using HGD-MLPA and sequencing, we identified four larger deletions encompassing from 1 to 4 exons of this gene and we defined their exact breakpoints: deletion of exons 1-4 (c.1-8460_282 + 6727del), deletion of exons 5 and 6 (c.283-9199_434 + 1688del), deletion of exon 11 (c.775-1915_879 + 1293del), and deletion of exon 13 (c.1007-1709_1188 + 1121del). We suggest including MLPA in the DNA diagnostic protocols for AKU in cases where DNA sequencing does not lead to identification of both HGD variants.
Asunto(s)
Alcaptonuria , Humanos , Alcaptonuria/diagnóstico , Alcaptonuria/genética , Reacción en Cadena de la Polimerasa Multiplex , Homogentisato 1,2-Dioxigenasa/genética , Genómica , Secuencia de BasesRESUMEN
Non-invasive prenatal testing (NIPT) has become a routine practice in screening for common aneuploidies of chromosomes 21, 18, and 13 and gonosomes X and Y in fetuses worldwide since 2015 and has even expanded to include smaller subchromosomal events. In fact, the fetal fraction represents only a small proportion of cell-free DNA on a predominant background of maternal DNA. Unlike fetal findings that have to be confirmed using invasive testing, it has been well documented that NIPT provides information on maternal mosaicism, occult malignancies, and hidden health conditions due to copy number variations (CNVs) with diagnostic resolution. Although large duplications or deletions associated with certain medical conditions or syndromes are usually well recognized and easy to interpret, very little is known about small, relatively common copy number variations on the order of a few hundred kilobases and their potential impact on human health. We analyzed data from 6422 NIPT patient samples with a CNV detection resolution of 200 kb for the maternal genome and identified 942 distinct CNVs; 328 occurred repeatedly. We defined them as multiple occurring variants (MOVs). We scrutinized the most common ones, compared them with frequencies in the gnomAD SVs v2.1, dbVar, and DGV population databases, and analyzed them with an emphasis on genomic content and potential association with specific phenotypes.
RESUMEN
Discovery of fetal cell-free DNA fragments in maternal blood revolutionized prenatal diagnostics. Although non-invasive prenatal testing (NIPT) is already a matured screening test with high specificity and sensitivity, the accurate estimation of the proportion of fetal fragments, called fetal fraction, is crucial to avoid false-negative results. In this study, we collected 6999 samples from women undergoing NIPT testing with a single male fetus to demonstrate the influence of fetal fraction by the maternal and fetal characteristics. We show several fetal fraction discrepancies that contradict the generally presented conventional view. At first, the fetal fraction is not consistently rising with the maturity of the fetus due to a drop in 15 weeks of maturation. Secondly, the male samples have a lower fetal fraction than female fetuses, arguably due to the smaller gonosomal chromosomes. Finally, we discuss not only the possible reasons why this inconsistency exists but we also outline why these differences have not yet been identified and published. We demonstrate two non-intuitive trends to better comprehend the fetal fraction development and more precise selection of patients with sufficient fetal fraction for accurate testing.
Asunto(s)
Ácidos Nucleicos Libres de Células , Diagnóstico Prenatal , Embarazo , Femenino , Humanos , Masculino , Edad Gestacional , Diagnóstico Prenatal/métodos , Desarrollo FetalRESUMEN
Noninvasive prenatal testing (NIPT) is one of the most common prenatal screening tests used worldwide. Trisomy Test® belongs to NIPT tests based on low-coverage whole-genome sequencing. In our prospective study, 7279 samples of pregnant women collected during approximately two years were analyzed. In this cohort, 117 positive cases for trisomies 21, 18, and 13 were reported. An in-house designed bioinformatic pipeline and proprietary biostatistical approach was used for the detection of trisomies. The pooled sensitivity and specificity of our test reached 99.12% and 99.94%, respectively. The proportion of repeatedly uninformative results after repeated blood draws was 1.11%. Based on the presented results, we can confirm that the Trisomy Test® is fully comparable with other commercial NIPT tests available worldwide.
RESUMEN
Low-coverage massively parallel genome sequencing for non-invasive prenatal testing (NIPT) of common aneuploidies is one of the most rapidly adopted and relatively low-cost DNA tests. Since aggregation of reads from a large number of samples allows overcoming the problems of extremely low coverage of individual samples, we describe the possible re-use of the data generated during NIPT testing for genome scale population specific frequency determination of small DNA variants, requiring no additional costs except of those for the NIPT test itself. We applied our method to a data set comprising of 1501 original NIPT test results and evaluated the findings on different levels, from in silico population frequency comparisons up to wet lab validation analyses using a gold-standard method based on Sanger sequencing. The revealed high reliability of variant calling and allelic frequency determinations suggest that these NIPT data could serve as valuable alternatives to large scale population studies even for smaller countries around the world.
Asunto(s)
Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Diagnóstico Prenatal/métodos , Biología Computacional/economía , Femenino , Frecuencia de los Genes , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Humanos , Embarazo , Diagnóstico Prenatal/economía , Reproducibilidad de los Resultados , Eslovaquia , Secuenciación Completa del Genoma/economíaRESUMEN
Alkaptonuria (AKU) is a rare metabolic disorder caused by a deficient enzyme in the tyrosine degradation pathway, homogentisate 1,2-dioxygenase (HGD). In 172 AKU patients from 39 countries, we identified 28 novel variants of the HGD gene, which include three larger genomic deletions within this gene discovered via self-designed multiplex ligation-dependent probe amplification (MLPA) probes. In addition, using a reporter minigene assay, we provide evidence that three of eight tested variants potentially affecting splicing cause exon skipping or cryptic splice-site activation. Extensive bioinformatics analysis of novel missense variants, and of the entire HGD monomer, confirmed mCSM as an effective computational tool for evaluating possible enzyme inactivation mechanisms. For the first time for AKU, a genotype-phenotype correlation study was performed for the three most frequent HGD variants identified in the Suitability Of Nitisinone in Alkaptonuria 2 (SONIA2) study. We found a small but statistically significant difference in urinary homogentisic acid (HGA) excretion, corrected for dietary protein intake, between variants leading to 1% or >30% residual HGD activity. There was, interestingly, no difference in serum levels or absolute urinary excretion of HGA, or clinical symptoms, indicating that protein intake is more important than differences in HGD variants for the amounts of HGA that accumulate in the body of AKU patients.
Asunto(s)
Alcaptonuria/genética , Variación Genética , Genotipo , Homogentisato 1,2-Dioxigenasa/genética , Alcaptonuria/enzimología , Estudios de Cohortes , Femenino , Humanos , Reacción en Cadena de la Ligasa , MasculinoRESUMEN
MOTIVATION: Non-invasive prenatal testing or NIPT is currently among the top researched topic in obstetric care. While the performance of the current state-of-the-art NIPT solutions achieve high sensitivity and specificity, they still struggle with a considerable number of samples that cannot be concluded with certainty. Such uninformative results are often subject to repeated blood sampling and re-analysis, usually after two weeks, and this period may cause a stress to the future mothers as well as increase the overall cost of the test. RESULTS: We propose a supplementary method to traditional z-scores to reduce the number of such uninformative calls. The method is based on a novel analysis of the length profile of circulating cell free DNA which compares the change in such profiles when random-based and length-based elimination of some fragments is performed. The proposed method is not as accurate as the standard z-score; however, our results suggest that combination of these two independent methods correctly resolves a substantial portion of healthy samples with an uninformative result. Additionally, we discuss how the proposed method can be used to identify maternal aberrations, thus reducing the risk of false positive and false negative calls. AVAILABILITY AND IMPLEMENTATION: The open-source code of the proposed methods, together with test data, is freely available for non-commercial users at github web page https://github.com/jbudis/lambda. SUPPLEMENTARY INFORMATION: Supplementary materials are available at Bioinformatics online.
Asunto(s)
Diagnóstico Prenatal , Femenino , Humanos , Embarazo , Sensibilidad y EspecificidadRESUMEN
Autosomal dominant disorder Legius syndrome (NF1- like syndrome) shows phenotype features that overlap with neurofibromatosis type 1 (NF1), such as CALMs, freckling, macrocephaly and learning disability. Mutation analysis provides an important tool in order to distinguish two entities that have different clinical implications. We analyzed SPRED1 gene by cDNA and/or gDNA sequencing in a cohort of 46 Slovak patients in whom previously NF1 mutation was excluded. In one case we identified a nonsense mutation c.46C>T (p.Arg16*) in exon 2 of SPRED1 gene, confirming diagnosis of Legius syndrome. This mutation was reported previously.