Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurotrauma ; 41(3-4): 393-406, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37776177

RESUMEN

Brain edema formation is a key factor for secondary tissue damage after traumatic brain injury (TBI), however, the type of brain edema and the temporal profile of edema formation are still unclear. We performed free water imaging, a bi-tensor model based diffusion MRI analysis, to characterize vasogenic brain edema (VBE) and cytotoxic edema (CBE) formation up to 7 days after experimental TBI. Male C57/Bl6 mice were subjected to controlled cortical impact (CCI) or sham surgery and investigated by MRI 4h, 1, 2, 3, 5, and 7 days thereafter (n = 8/group). We determined mean diffusivity (MD) and free water (FW) in contusion, pericontusional area, ipsi- and contralateral brain tissue. Free (i.e., non-restricted) water was interpreted as VBE, restricted water as CBE. To verify the results, VBE formation was investigated by in-vivo 2-Photon Microscopy (2-PM) 48h after surgery. We found that MD and FW values decreased for 48h within the contusion, indicating the occurrence of CBE. In pericontusional tissue, MD and FW indices were increased at all time points, suggesting the formation of VBE. This was consistent with our results obtained by 2-PM. Taken together, CBE formation occurs for 48h after trauma and is restricted to the contusion, while VBE forms in pericontusional tissue up to 7 days after TBI. Our results indicate that free water magnetic resonance imaging may represent a promising tool to investigate vasogenic and cytotoxic brain edema in the laboratory and in patients.


Asunto(s)
Edema Encefálico , Lesiones Traumáticas del Encéfalo , Contusiones , Humanos , Masculino , Ratones , Animales , Edema Encefálico/diagnóstico por imagen , Edema Encefálico/etiología , Edema Encefálico/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/patología , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Edema , Agua
2.
Brain ; 147(3): 1057-1074, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38153327

RESUMEN

Incomplete reperfusion of the microvasculature ('no-reflow') after ischaemic stroke damages salvageable brain tissue. Previous ex vivo studies suggest pericytes are vulnerable to ischaemia and may exacerbate no-reflow, but the viability of pericytes and their association with no-reflow remains under-explored in vivo. Using longitudinal in vivo two-photon single-cell imaging over 7 days, we showed that 87% of pericytes constrict during cerebral ischaemia and remain constricted post reperfusion, and 50% of the pericyte population are acutely damaged. Moreover, we revealed ischaemic pericytes to be fundamentally implicated in capillary no-reflow by limiting and arresting blood flow within the first 24 h post stroke. Despite sustaining acute membrane damage, we observed that over half of all cortical pericytes survived ischaemia and responded to vasoactive stimuli, upregulated unique transcriptomic profiles and replicated. Finally, we demonstrated the delayed recovery of capillary diameter by ischaemic pericytes after reperfusion predicted vessel reconstriction in the subacute phase of stroke. Cumulatively, these findings demonstrate that surviving cortical pericytes remain both viable and promising therapeutic targets to counteract no-reflow after ischaemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Pericitos/fisiología , Infarto Cerebral
3.
Front Neurol ; 12: 745770, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858312

RESUMEN

The brain has a high energy demand but little to no energy stores. Therefore, proper brain function relies on the delivery of glucose and oxygen by the cerebral vasculature. The regulation of cerebral blood flow (CBF) occurs at the level of the cerebral capillaries and is driven by a fast and efficient crosstalk between neurons and vessels, a process termed neurovascular coupling (NVC). Experimentally NVC is mainly triggered by sensory stimulation and assessed by measuring either CBF by laser Doppler fluxmetry, laser speckle contrast imaging (LSCI), intrinsic optical imaging, BOLD fMRI, near infrared spectroscopy (NIRS) or functional ultrasound imaging (fUS). Since these techniques have relatively low spatial resolution, diameters of cerebral vessels are mainly assessed by 2-photon microscopy (2-PM). Results of studies on NVC rely on stable animal physiology, high-quality data acquisition, and unbiased data analysis, criteria, which are not easy to achieve. In the current study, we assessed NVC using two different imaging modalities, i.e., LSCI and 2-PM, and analyzed our data using an investigator-independent Matlab-based analysis tool, after manually defining the area of analysis in LSCI and vessels to measure in 2-PM. By investigating NVC in 6-8 weeks, 1-, and 2-year-old mice, we found that NVC was maximal in 1-year old mice and was significantly reduced in aged mice. These findings suggest that NVC is differently affected during the aging process. Most interestingly, specifically pial arterioles, seem to be distinctly affected by the aging. The main finding of our study is that the automated analysis tool works very efficiently in terms of time and accuracy. In fact, the tool reduces the analysis time of one animal from approximately 23 h to about 2 s while basically making no mistakes. In summary, we developed an experimental workflow, which allows us to reliably measure NVC with high spatial and temporal resolution in young and aged mice and to analyze these data in an investigator-independent manner.

4.
Front Neurol ; 12: 807658, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35140676

RESUMEN

BACKGROUND: Leukocytes contribute to tissue damage after cerebral ischemia; however, the mechanisms underlying this process are still unclear. This study investigates the temporal and spatial relationship between vascular leukocyte recruitment and tissue damage and aims to uncover which step of the leukocyte recruitment cascade is involved in ischemic brain injury. METHODS: Male wild-type, ICAM-1-deficient, anti-CD18 antibody treated, or selectin-deficient [fucusyltransferase (FucT IV/VII-/-)] mice were subjected to 60 min of middle cerebral artery occlusion (MCAo). The interaction between leukocytes and the cerebrovascular endothelium was quantified by in vivo fluorescence microscopy up to 15 h thereafter. Temporal dynamics of neuronal cell death and leukocyte migration were assessed at the same time points and in the same tissue volume by histology. RESULTS: In wild-type mice, leukocytes started to firmly adhere to the wall of pial postcapillary venules two hours after reperfusion. Three hours later, neuronal loss started and 13 h later, leukocytes transmigrated into brain tissue. Loss of selectin function did not influence this process. Application of an anti-CD18 antibody or genetic deletion of ICAM-1, however, significantly reduced tight adhesion of leukocytes to the cerebrovascular endothelium (-60%; p < 0.01) and increased the number of viable neurons in the ischemic penumbra by 5-fold (p < 0.01); the number of intraparenchymal leukocytes was not affected. CONCLUSIONS: Our findings suggest that ischemia triggers only a transient adhesion of leukocytes to the venous endothelium and that inhibition of this process is sufficient to partly prevent ischemic tissue damage.

5.
Nutr Neurosci ; 19(2): 55-62, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25222769

RESUMEN

OBJECTIVES: Folic acid (FA) is physiologically important in mammals and is a common vitamin supplement used during pregnancy and lactation. Numerous studies have reported that FA significantly improves endothelial function. The blood-brain barrier (BBB) plays an important role in maintaining the microenvironment required for neuronal function, but its unique structure is damaged by epileptic seizures. The aim of this study was to evaluate the potential protective role of FA on BBB leakage, as well as on the reactive astrogliosis in pregnant rats and their prepubertal offspring during pentylenetetrazole (PTZ)-induced epileptic seizure. METHODS: Pregnant rats were treated with FA (5 mg/kg) and PTZ on gestational days 0-19 and 19, respectively. The pups were treated with PTZ at puberty. Evans blue was used to evaluate BBB integrity. Reactive astrogliosis was defined using immunohistochemical analysis for glial fibrillary acidic protein (GFAP). Mean arterial blood pressure (MABP) was measured at the femoral artery. RESULTS: A moderate decrease in BBB leakage was observed in FA-treated pregnant and prepubertal animals (P < 0.05). MABP was decreased significantly in pregnant rats (P < 0.05). The epilepsy-induced increase in MABP was less prominent in pregnant animals (P < 0.05). GFAP intensity decreased in PTZ-treated pregnant animals (P < 0.01) and FA-treated prepubertal rats. DISCUSSION: Our findings suggest that FA, which is used as a maternal vitamin to promote normal fetus development, may be beneficial against seizure-induced neuronal damage by decreasing BBB leakage and reactive astrogliosis in pregnant and prepubertal rats.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Ácido Fólico/farmacología , Pentilenotetrazol/efectos adversos , Convulsiones/tratamiento farmacológico , Animales , Presión Sanguínea/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Femenino , Ácido Fólico/administración & dosificación , Proteína Ácida Fibrilar de la Glía/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Embarazo , Ratas , Ratas Wistar , Convulsiones/inducido químicamente
6.
Neurosci Lett ; 602: 133-8, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26149233

RESUMEN

Apelin is a novel bioactive peptide as the endogenous ligand for APJ. Apelin and APJ have also been identified in the testis, hypothalamic nuclei such as arcuate, supraoptic and paraventricular nuclei, implicating roles in the control of reproduction. Therefore, the present study was designed to investigate the effects of chronic central infusion of apelin-13 on LH, FSH and testosterone levels and testis morphology. 21 Wistar-Albino male rats received continuous intracerebroventricular infusion via Alzet osmotic mini pumps filled artificial cerebrospinal fluid (vehicle) or apelin-13 at concentrations of 1 or 10 nmol (10 µl/h) for seven days. At the last 90 min of the infusion period, the blood samples were collected at 15 min intervals (0-90 min) for LH and FSH analyses. At the last sampling point, the blood samples were analyzed for testosterone levels. Infusion of high dose apelin-13 significantly suppressed LH release compared with the vehicle values at 30, 60 and 75 min (p<0.05). However, FSH levels did not significantly differ among the groups. Serum testosterone levels in high dose apelin-13 group were statistically lower than the control group (p<0.05). In addition, histological examination showed that infusion of high dose apelin-13 significantly decreased the number of Leydig cells compared with the control and lower dose apelin-13 groups (p<0.05, p<0.01). Our results suggest that apelin-13 may play a role in the central regulation and decreases testosterone release by suppressing LH secretion. Thus, antagonists of the apelin receptor may, therefore, be useful for pharmaceuticals in the treatment of infertility.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/farmacología , Testículo/efectos de los fármacos , Animales , Receptores de Apelina , Hormona Folículo Estimulante/sangre , Infusiones Intraventriculares , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células Intersticiales del Testículo/citología , Células Intersticiales del Testículo/efectos de los fármacos , Ligandos , Hormona Luteinizante/sangre , Masculino , Ratas Wistar , Receptores Acoplados a Proteínas G/metabolismo , Túbulos Seminíferos/citología , Túbulos Seminíferos/efectos de los fármacos , Testículo/citología , Testosterona/sangre
7.
Biol Trace Elem Res ; 151(2): 256-62, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23179348

RESUMEN

We evaluated the effect of zinc treatment on the blood-brain barrier (BBB) permeability and the levels of zinc (Zn), natrium (Na), magnesium (Mg), and copper (Cu) in the brain tissue during epileptic seizures. The Wistar albino rats were divided into four groups, each as follows: (1) control group, (2) pentylenetetrazole (PTZ) group: rats treated with PTZ to induce seizures, (3) Zn group: rats treated with ZnCl(2) added to drinking water for 2 months, and (4) Zn + PTZ group. The brains were divided into left, right hemispheres, and cerebellum + brain stem regions. Evans blue was used as BBB tracer. Element concentrations were analyzed by inductively coupled plasma optical emission spectroscopy. The BBB permeability has been found to be increased in all experimental groups (p < 0.05). Zn concentrations in all brain regions in Zn-supplemented groups (p < 0.05) showed an increase. BBB permeability and Zn level in cerebellum + brain stem region were significantly high compared to cerebral hemispheres (p < 0.05). In all experimental groups, Cu concentration decreased, whereas Na concentrations showed an increase (p < 0.05). Mg content in all the brain regions decreased in the Zn group and Zn + PTZ groups compared to other groups (p < 0.001). We also found that all elements' levels showed hemispheric differences in all groups. During convulsions, Zn treatment did not show any protective effect on BBB permeability. Chronic Zn treatment decreased Mg and Cu concentration and increased Na levels in the brain tissue. Our results indicated that Zn treatment showed proconvulsant activity and increased BBB permeability, possibly changing prooxidant/antioxidant balance and neuronal excitability during seizures.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Cloruros/farmacología , Convulsiones/metabolismo , Compuestos de Zinc/farmacología , Animales , Presión Sanguínea , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/metabolismo , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Cloruros/administración & dosificación , Convulsivantes/farmacología , Cobre/metabolismo , Azul de Evans/metabolismo , Magnesio/metabolismo , Pentilenotetrazol/efectos adversos , Permeabilidad , Ratas , Ratas Wistar , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/patología , Sodio/metabolismo , Zinc/metabolismo , Compuestos de Zinc/administración & dosificación
8.
Bosn J Basic Med Sci ; 11(2): 108-12, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21619558

RESUMEN

In this investigation, the effects of hypoglycemic coma and alcoholic coma on the blood-brain barrier (BBB) permeability have been compared. Female adult Wistar albino rats weighing 180-230 g were divided into three groups: Control group (n=8), Alcoholic Coma Group (n=18), and Hypoglycemic Coma group (n=12). The animals went into coma approximately 3-4 hours after insulin administration and 3-5 minutes after alcohol administration. Evans blue (4mL/kg) was injected intravenously as BBB tracer. It was observed that the alcoholic coma did not significantly increase the BBB permeability in any of the brain regions when compared to control group. Changes in BBB permeability were significantly increased by the hypoglycemic coma in comparison to the control group values (p<0.01). Our findings suggest that hypoglycemic and alcoholic coma have different effects on the BBB permeability depending on the energy metabolism.


Asunto(s)
Intoxicación Alcohólica/fisiopatología , Barrera Hematoencefálica/fisiopatología , Coma/fisiopatología , Hipoglucemia/fisiopatología , Coma Insulínico/fisiopatología , Animales , Glucemia/metabolismo , Presión Sanguínea , Barrera Hematoencefálica/efectos de los fármacos , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Etanol/toxicidad , Femenino , Insulina/administración & dosificación , Permeabilidad/efectos de los fármacos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...