Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 10(12): 894, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772153

RESUMEN

Glioblastoma Multiforme (GBM) is the most common and aggressive primary brain tumor. Despite recent developments in surgery, chemo- and radio-therapy, a currently poor prognosis of GBM patients highlights an urgent need for novel treatment strategies. TRAIL (TNF Related Apoptosis Inducing Ligand) is a potent anti-cancer agent that can induce apoptosis selectively in cancer cells. GBM cells frequently develop resistance to TRAIL which renders clinical application of TRAIL therapeutics inefficient. In this study, we undertook a chemical screening approach using a library of epigenetic modifier drugs to identify compounds that could augment TRAIL response. We identified the fungal metabolite chaetocin, an inhibitor of histone methyl transferase SUV39H1, as a novel TRAIL sensitizer. Combining low subtoxic doses of chaetocin and TRAIL resulted in very potent and rapid apoptosis of GBM cells. Chaetocin also effectively sensitized GBM cells to further pro-apoptotic agents, such as FasL and BH3 mimetics. Chaetocin mediated apoptosis sensitization was achieved through ROS generation and consequent DNA damage induction that involved P53 activity. Chaetocin induced transcriptomic changes showed induction of antioxidant defense mechanisms and DNA damage response pathways. Heme Oxygenase 1 (HMOX1) was among the top upregulated genes, whose induction was ROS-dependent and HMOX1 depletion enhanced chaetocin mediated TRAIL sensitization. Finally, chaetocin and TRAIL combination treatment revealed efficacy in vivo. Taken together, our results provide a novel role for chaetocin as an apoptosis priming agent and its combination with pro-apoptotic therapies might offer new therapeutic approaches for GBMs.


Asunto(s)
Apoptosis , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Hongos/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Metaboloma , Animales , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/genética , Caspasas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Epigénesis Genética/efectos de los fármacos , Proteína Ligando Fas/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Metaboloma/efectos de los fármacos , Ratones , Modelos Biológicos , Piperazinas/farmacología , Piperazinas/uso terapéutico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Transcriptoma/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína bcl-X/metabolismo
2.
Cancers (Basel) ; 11(11)2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31731490

RESUMEN

High mortality rates of glioblastoma (GBM) patients are partly attributed to the invasive behavior of tumor cells that exhibit extensive infiltration into adjacent brain tissue, leading to rapid, inevitable, and therapy-resistant recurrence. In this study, we analyzed transcriptome of motile (dispersive) and non-motile (core) GBM cells using an in vitro spheroid dispersal model and identified SERPINE1 as a modulator of GBM cell dispersal. Genetic or pharmacological inhibition of SERPINE1 reduced spheroid dispersal and cell adhesion by regulating cell-substrate adhesion. We examined TGFß as a potential upstream regulator of SERPINE1 expression. We also assessed the significance of SERPINE1 in GBM growth and invasion using TCGA glioma datasets and a patient-derived orthotopic GBM model. SERPINE1 expression was associated with poor prognosis and mesenchymal GBM in patients. SERPINE1 knock-down in primary GBM cells suppressed tumor growth and invasiveness in the brain. Together, our results indicate that SERPINE1 is a key player in GBM dispersal and provide insights for future anti-invasive therapy design.

3.
Cell Death Discov ; 5: 64, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30774992

RESUMEN

Harakiri (HRK) is a BH3-only protein of the Bcl-2 family and regulates apoptosis by interfering with anti-apoptotic Bcl-2 and Bcl-xL proteins. While its function is mainly characterized in the nervous system, its role in tumors is ill-defined with few studies demonstrating HRK silencing in tumors. In this study, we investigated the role of HRK in the most aggressive primary brain tumor, glioblastoma multiforme (GBM). We showed that HRK is differentially expressed among established GBM cell lines and that HRK overexpression can induce apoptosis in GBM cells at different levels. This phenotype can be blocked by forced expression of Bcl-2 and Bcl-xL, suggesting the functional interaction of Bcl-2/Bcl-xL and HRK in tumor cells. Moreover, HRK overexpression cooperates with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a known tumor-specific pro-apoptotic agent. Besides, secondary agents that augment TRAIL response, such as the histone deacetylase inhibitor MS-275, significantly increases HRK expression. In addition, GBM cell response to TRAIL and MS-275 can be partly abolished by HRK silencing. Finally, we showed that HRK induction suppresses tumor growth in orthotopic GBM models in vivo, leading to increased survival. Taken together, our results suggest that HRK expression is associated with GBM cell apoptosis and increasing HRK activity in GBM tumors might offer new therapeutic approaches.

4.
Macromol Biosci ; 18(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29333657

RESUMEN

3D platforms are important for monitoring tumor progression and screening drug candidates to eradicate tumors such as glioblastoma multiforme (GBM), a malignant type of human brain tumor. Here, a new strategy is reported that exploits visible-light-induced crosslinking of gelatin where the reaction is carried out in the absence of an additional crosslinker. Visible light-induced crosslinking promotes the design of cancer microenvironment-mimetic system without compromising the cell viability during the process and absence of crosslinker facilitates the synthesis of the unique construct. Suspension and spheroid-based models of GBM are used to investigate cellular behavior, expression profiles of malignancy, and apoptosis-related genes within this unique network. Furthermore, sensitivity to an anticancer drug, Digitoxigenin, treatment is investigated in detail. The data suggest that U373 cells, in sparse or spheroid form, have significantly decreased expressions of apoptosis-activating genes, Bad, Puma, and Caspase-3, and a high expression of prosurvival Bcl-2 gene within GelMA hydrogels. Matrix-metalloproteinase genes are also upregulated within GelMA, suggesting positive contribution of gels on extracellular remodeling of cancer cells. This unique photocurable gelatin holds great potential for clinical translation of cancer research through the analysis of 3D malignant cancer cell behavior, and hence for more efficient treatment methods for GBM.


Asunto(s)
Neoplasias Encefálicas/fisiopatología , Gelatina , Glioblastoma/fisiopatología , Hidrogeles/química , Metacrilatos , Microambiente Tumoral , Biomimética , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...