Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 7(6): 852-861, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37127767

RESUMEN

Global climate change is shifting the timing of life-cycle events, sometimes resulting in phenological mismatches between predators and prey. Phenological shifts and subsequent mismatches may be consistent across populations, or they could vary unpredictably across populations within the same species. For anadromous Pacific salmon (Oncorhynchus spp.), juveniles from thousands of locally adapted populations migrate from diverse freshwater habitats to the Pacific Ocean every year. Both the timing of freshwater migration and ocean arrival, relative to nearshore prey (phenological match/mismatch), can control marine survival and population dynamics. Here we examined phenological change of 66 populations across six anadromous Pacific salmon species throughout their range in western North America with the longest time series spanning 1951-2019. We show that different salmon species have different rates of phenological change but that there was substantial within-species variation that was not correlated with changing environmental conditions or geographic patterns. Moreover, outmigration phenologies have not tracked shifts in the timing of marine primary productivity, potentially increasing the frequency of future phenological mismatches. Understanding population responses to mismatches with prey are an important part of characterizing overall population-specific climate vulnerability.


Asunto(s)
Oncorhynchus , Animales , Salmón/fisiología , Ecosistema , Dinámica Poblacional , América del Norte
2.
Conserv Physiol ; 9(1): coab089, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858597

RESUMEN

Water quality degradation due to lake eutrophication and climate change contributes to the risk of extirpation for the endangered Cultus Lake sockeye salmon. Sockeye salmon juveniles experience both low-oxygen water in profundal lake habitats and elevated temperatures above the thermocline during diel vertical migrations in summer and fall when the lake is thermally stratified. We used a transcriptomic tool (Salmon Fit-Chip) to determine whether salmon were experiencing thermal and/or hypoxic stress during this period. The results showed that over one-third of the fish were responding to either hypoxic (35.5%) or thermal stress (40.9%) during periods when these environmental stressors were pronounced within the lake, but not during periods when profundal dissolved oxygen was elevated and the water column was isothermal and cool. The most consistent signs of hypoxic stress occurred during July (52.2%) and September (44.4%). A total of 25.7% of individual fish sampled during months when both stressors were occurring (July, September, October) showed signatures of both stressors. When a combination of hypoxic and thermal stress biomarkers was applied, 92% of fish showed evidence of one or both stressors; hence, for at least several months of the year, most sockeye salmon juveniles in Cultus Lake are experiencing anthropogenically environmentally induced stress. We also detected the presence of pathogenic ciliate Ichthyoptherius multifiliis in the gill tissue of juveniles, with a higher infection signal in Cultus Lake compared to juveniles from nearby Chilliwack Lake. These data provide powerful new evidence that Cultus Lake sockeye salmon, which experience relatively lower juvenile survival than Chilliwack sockeye salmon, are more compromised by stress and carry a higher level of infection of at least one pathogenic agent. Thus, we hypothesize that the cumulative or synergistic interplay between stressors and diseases, clearly documented to be occurring within Cultus Lake, are contributing to increased mortality of endangered sockeye salmon.

4.
Environ Monit Assess ; 192(9): 568, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32767118

RESUMEN

Anthropogenic atmospheric emission and subsequent deposition of sulfur (S) has been linked to disrupted watershed biogeochemical processes through soil and surface water acidification. We investigated watershed-scale impacts of acidic deposition on tributary concentrations and watershed exports of major nutrients and ions for the Kitimat River Watershed, British Columbia. Since the 1950s, the Kitimat watershed had an aluminum smelting facility with substantial emissions at the river estuary. Emissions load the airshed overlying the watershed and potentially impact western tributaries leaving eastern tributaries available as reference. We assessed concentrations and export of key compounds in three reference and six potentially impacted tributaries and watersheds in 2015 and 2016. Sulfate (SO4), fluoride (F), nitrate (NO3), and chloride (Cl) were significantly higher in impacted tributaries. F concentrations exceeded the Canadian Council of Ministers of the Environment guideline for aquatic life in 83% of samples collected from impacted streams. Watershed export and associated uncertainty were determined by bootstrapped flow-stratified Beale's unbiased estimator. Impact of emissions on watershed export was modeled in a Bayesian approach to include variance in the export estimate to inform the uncertainty of model parameters. Export of SO4 and Ca increased significantly within 16 km and 8 km, respectively, toward the smelter emissions. The corresponding impacted area for SO4 and Ca was approximately 100 km2 and 45 km2, respectively. SO4 export is likely due to direct impacts of S deposition, with excess S being flushed from the watersheds. Ca export patterns likely result from indirect impacts of S deposition on soil chemistry and flushing of Ca. These impacts may contribute to effects within tributaries on benthic stream communities and regionally important juvenile Pacific salmon.


Asunto(s)
Monitoreo del Ambiente , Ríos , Teorema de Bayes , Canadá , Nitratos/análisis
5.
PLoS One ; 14(7): e0219241, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31339893

RESUMEN

Peri-urban lakes increasingly experience intensified anthropogenic impacts as watershed uses and developments increase. Cultus Lake is an oligo-mesotrophic, peri-urban lake near Vancouver, British Columbia, Canada that experiences significant seasonal tourism, anthropogenic nutrient loadings, and associated cultural eutrophication. Left unabated, these cumulative stresses threaten the critical habitat and persistence of two endemic species at risk (Coastrange Sculpin, Cultus population; Cultus Lake sockeye salmon) and diverse lake-derived ecosystem services. We constructed water and nutrient budgets for the Cultus Lake watershed to identify and quantify major sources and loadings of nitrogen (N) and phosphorus (P). A steady-state water quality model, calibrated against current loadings and limnological data, was used to reconstruct the historic lake trophic status and explore limnological changes in response to realistic development and mitigation scenarios. Significant local P loadings to Cultus Lake arise from septic leaching (19%) and migratory gull guano deposition (22%). Watershed runoff contributes the majority of total P (53%) and N (73%) loads to Cultus Lake, with substantial local N contributions arising from the agricultural Columbia Valley (41% of total N load). However, we estimate that up to 66% of N and 70% of P in watershed runoff is ultimately sourced via deposition from the nutrient-contaminated regional airshed, with direct atmospheric deposition on the lake surface contributing an additional 17% of N and 5% of P. Thus, atmospheric deposition is the largest single source of nutrient loading to Cultus Lake, cumulatively responsible for 63% and 42% of total N and P loadings, respectively. Modeled future loading scenarios suggest Cultus Lake could become mesotrophic within the next 25 years, highlighting a heightened need for near-term abatement of P loads. Although mitigating P loads from local watershed sources will slow the rate of eutrophication, management efforts targeting reductions in atmospheric-P within the regional airshed are necessary to halt or reverse lake eutrophication, and conserve both critical habitat for imperiled species at risk and lake-derived ecosystem services.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Eutrofización , Lagos , Atmósfera/química , Calibración , Ciudades , Modelos Teóricos , Nitrógeno/análisis , Fósforo/análisis , Agua , Calidad del Agua
6.
Proc Natl Acad Sci U S A ; 110(5): 1750-5, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23322737

RESUMEN

Observational data from the past century have highlighted the importance of interdecadal modes of variability in fish population dynamics, but how these patterns of variation fit into a broader temporal and spatial context remains largely unknown. We analyzed time series of stable nitrogen isotopes from the sediments of 20 sockeye salmon nursery lakes across western Alaska to characterize temporal and spatial patterns in salmon abundance over the past ∼500 y. Although some stocks varied on interdecadal time scales (30- to 80-y cycles), centennial-scale variation, undetectable in modern-day catch records and survey data, has dominated salmon population dynamics over the past 500 y. Before 1900, variation in abundance was clearly not synchronous among stocks, and the only temporal signal common to lake sediment records from this region was the onset of commercial fishing in the late 1800s. Thus, historical changes in climate did not synchronize stock dynamics over centennial time scales, emphasizing that ecosystem complexity can produce a diversity of ecological responses to regional climate forcing. Our results show that marine fish populations may alternate between naturally driven periods of high and low abundance over time scales of decades to centuries and suggest that management models that assume time-invariant productivity or carrying capacity parameters may be poor representations of the biological reality in these systems.


Asunto(s)
Ecosistema , Explotaciones Pesqueras/estadística & datos numéricos , Sedimentos Geológicos/análisis , Salmón/crecimiento & desarrollo , Alaska , Animales , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/tendencias , Ecología/métodos , Ecología/tendencias , Explotaciones Pesqueras/métodos , Geografía , Radioisótopos de Plomo/análisis , Isótopos de Nitrógeno/análisis , Océano Pacífico , Dinámica Poblacional , Datación Radiométrica/métodos , Factores de Tiempo
7.
Science ; 334(6062): 1545-8, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22174250

RESUMEN

Humans have more than doubled the amount of reactive nitrogen (Nr) added to the biosphere, yet most of what is known about its accumulation and ecological effects is derived from studies of heavily populated regions. Nitrogen (N) stable isotope ratios ((15)N:(14)N) in dated sediments from 25 remote Northern Hemisphere lakes show a coherent signal of an isotopically distinct source of N to ecosystems beginning in 1895 ± 10 years (±1 standard deviation). Initial shifts in N isotope composition recorded in lake sediments coincide with anthropogenic CO(2) emissions but accelerate with widespread industrial Nr production during the past half century. Although current atmospheric Nr deposition rates in remote regions are relatively low, anthropogenic N has probably influenced watershed N budgets across the Northern Hemisphere for over a century.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...