Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38826330

RESUMEN

Genes encoding the RNA-binding proteins FUS, EWSR1, and TAF15 (FET proteins) are involved in chromosomal translocations in rare sarcomas. FET-rearranged sarcomas are often aggressive malignancies affecting patients of all ages. New therapies are needed. These translocations fuse the 5' portion of the FET gene with a 3' partner gene encoding a transcription factor (TF). The resulting fusion proteins are oncogenic TFs with a FET protein low complexity domain (LCD) and a DNA binding domain. FET fusion proteins have proven stubbornly difficult to target directly and promising strategies target critical co-regulators. One candidate is lysine specific demethylase 1 (LSD1). LSD1 is recruited by multiple FET fusions, including EWSR1::FLI1. LSD1 promotes EWSR1::FLI1 activity and treatment with the noncompetitive inhibitor SP-2509 blocks EWSR1::FLI1 transcriptional function. A similar molecule, seclidemstat (SP-2577), is currently in clinical trials for FET-rearranged sarcomas (NCT03600649). However, whether seclidemstat has pharmacological activity against FET fusions has not been demonstrated. Here, we evaluate the in vitro potency of seclidemstat against multiple FET-rearranged sarcoma cell lines, including Ewing sarcoma, desmoplastic small round cell tumor, clear cell sarcoma, and myxoid liposarcoma. We also define the transcriptomic effects of seclidemstat treatment and evaluated the activity of seclidemstat against FET fusion transcriptional regulation. Seclidemstat showed potent activity in cell viability assays across FET-rearranged sarcomas and disrupted the transcriptional function of all tested fusions. Though epigenetic and targeted inhibitors are unlikely to be effective as a single agents in the clinic, these data suggest seclidemstat remains a promising new treatment strategy for patients with FET-rearranged sarcomas.

2.
bioRxiv ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38352344

RESUMEN

Ewing sarcoma is the second most common bone cancer in children and young adults. In 85% of patients, a translocation between chromosomes 11 and 22 results in a potent fusion oncoprotein, EWSR1::FLI1. EWSR1::FLI1 is the only genetic alteration in an otherwise unaltered genome of Ewing sarcoma tumors. The EWSR1 portion of the protein is an intrinsically disordered domain involved in transcriptional regulation by EWSR1::FLI1. The FLI portion of the fusion contains a DNA binding domain shown to bind core GGAA motifs and GGAA repeats. A small alpha-helix in the DNA binding domain of FLI1, DBD-𝛼4 helix, is critical for the transcription function of EWSR1::FLI1. In this study, we aimed to understand the mechanism by which the DBD-𝛼4 helix promotes transcription, and therefore oncogenic transformation. We utilized a multi-omics approach to assess chromatin organization, active chromatinmarks, genome binding, and gene expression in cells expressing EWSR1::FLI1 constructs with and without the DBD-𝛼4 helix. Our studies revealed DBD-𝛼4 helix is crucial for cooperative binding of EWSR1::FLI1 at GGAA microsatellites. This binding underlies many aspects of genome regulation by EWSR1::FLI1 such as formation of TADs, chromatin loops, enhancers and productive transcription hubs.

3.
Nat Cell Biol ; 25(2): 285-297, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36658220

RESUMEN

Transcription factors (TFs) are frequently mutated in cancer. Paediatric cancers exhibit few mutations genome-wide but frequently harbour sentinel mutations that affect TFs, which provides a context to precisely study the transcriptional circuits that support mutant TF-driven oncogenesis. A broadly relevant mechanism that has garnered intense focus involves the ability of mutant TFs to hijack wild-type lineage-specific TFs in self-reinforcing transcriptional circuits. However, it is not known whether this specific type of circuitry is equally crucial in all mutant TF-driven cancers. Here we describe an alternative yet central transcriptional mechanism that promotes Ewing sarcoma, wherein constraint, rather than reinforcement, of the activity of the fusion TF EWS-FLI supports cancer growth. We discover that ETV6 is a crucial TF dependency that is specific to this disease because it, counter-intuitively, represses the transcriptional output of EWS-FLI. This work discovers a previously undescribed transcriptional mechanism that promotes cancer.


Asunto(s)
Sarcoma de Ewing , Niño , Humanos , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Sarcoma de Ewing/genética
4.
Nucleic Acids Res ; 50(17): 9814-9837, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36124657

RESUMEN

Ewing sarcoma is a prototypical fusion transcription factor-associated pediatric cancer that expresses EWS/FLI or a highly related FET/ETS chimera. EWS/FLI dysregulates transcription to induce and maintain sarcomagenesis, but the mechanisms utilized are not fully understood. We therefore sought to define the global effects of EWS/FLI on chromatin conformation and transcription in Ewing sarcoma cells using a well-validated 'knock-down/rescue' model of EWS/FLI function in combination with next generation sequencing assays to evaluate how the chromatin landscape changes with loss, and recovery, of EWS/FLI expression. We found that EWS/FLI (and EWS/ERG) genomic localization is largely conserved across multiple patient-derived Ewing sarcoma cell lines. This EWS/FLI binding signature is associated with establishment of topologically-associated domain (TAD) boundaries, compartment activation, enhancer-promoter looping that involve both intra- and inter-TAD interactions, and gene activation. In addition, EWS/FLI co-localizes with the loop-extrusion factor cohesin to promote chromatin loops and TAD boundaries. Importantly, local chromatin features provide the basis for transcriptional heterogeneity in regulation of direct EWS/FLI target genes across different Ewing sarcoma cell lines. These data demonstrate a key role of EWS/FLI in mediating genome-wide changes in chromatin configuration and support the notion that fusion transcription factors serve as master regulators of three-dimensional reprogramming of chromatin.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/metabolismo , Sarcoma de Ewing , Línea Celular Tumoral , Niño , Cromatina/genética , Humanos , Proteínas de Fusión Oncogénica/genética , Proteína Proto-Oncogénica c-fli-1/genética , Proteína EWS de Unión a ARN/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo
5.
Mol Cancer Res ; 19(11): 1795-1801, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34465585

RESUMEN

Ewing sarcoma is a pediatric bone cancer defined by a chromosomal translocation fusing one of the FET family members to an ETS transcription factor. There have been seven reported chromosomal translocations, with the most recent reported over a decade ago. We now report a novel FET/ETS translocation involving FUS and ETV4 detected in a patient with Ewing sarcoma. Here, we characterized FUS/ETV4 by performing genomic localization and transcriptional regulatory studies on numerous FET/ETS fusions in a Ewing sarcoma cellular model. Through this comparative analysis, we demonstrate significant similarities across these fusions, and in doing so, validate FUS/ETV4 as a bona fide Ewing sarcoma translocation. This study presents the first genomic comparison of Ewing sarcoma-associated translocations and reveals that the FET/ETS fusions share highly similar, but not identical, genomic localization and transcriptional regulation patterns. These data strengthen the notion that FET/ETS fusions are key drivers of, and thus pathognomonic for, Ewing sarcoma. IMPLICATIONS: Identification and initial characterization of the novel Ewing sarcoma fusion, FUS/ETV4, expands the family of Ewing fusions and extends the diagnostic possibilities for this aggressive tumor of adolescents and young adults.


Asunto(s)
Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Sarcoma de Ewing/genética , Translocación Genética/genética , Humanos , Recién Nacido , Proteínas de Fusión Oncogénica/genética , Sarcoma de Ewing/patología
6.
Oncogene ; 40(29): 4759-4769, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34145397

RESUMEN

Ewing sarcoma is an aggressive bone cancer of children and young adults defined by the presence of a chromosomal translocation: t(11;22)(q24;q12). The encoded protein, EWS/FLI, fuses the amino-terminal domain of EWS to the carboxyl-terminus of FLI. The EWS portion is an intrinsically disordered transcriptional regulatory domain, while the FLI portion contains an ETS DNA-binding domain and two flanking regions of unknown function. Early studies using non-Ewing sarcoma models provided conflicting information on the roles of each domain of FLI in EWS/FLI oncogenic function. We therefore sought to define the specific contributions of each FLI domain to EWS/FLI activity in a well-validated Ewing sarcoma model and, in doing so, to better understand Ewing sarcoma development mediated by the fusion protein. We analyzed a series of engineered EWS/FLI mutants with alterations in the FLI portion using a variety of assays. Fluorescence anisotropy, CUT&RUN, and ATAC-sequencing experiments revealed that the isolated ETS domain is sufficient to maintain the normal DNA-binding and chromatin accessibility function of EWS/FLI. In contrast, RNA-sequencing and soft agar colony formation assays revealed that the ETS domain alone was insufficient for transcriptional regulatory and oncogenic transformation functions of the fusion protein. We found that an additional alpha-helix immediately downstream of the ETS domain is required for full transcriptional regulation and EWS/FLI-mediated oncogenesis. These data demonstrate a previously unknown role for FLI in transcriptional regulation that is distinct from its DNA-binding activity. This activity is critical for the cancer-causing function of EWS/FLI and may lead to novel therapeutic approaches.


Asunto(s)
Oncogenes , Niño , Humanos , Fagocitosis , Sarcoma de Ewing
7.
Epigenetics ; 16(4): 405-424, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32842875

RESUMEN

Paediatric cancers commonly harbour quiet mutational landscapes and are instead characterized by single driver events such as the mutation of critical chromatin regulators, expression of oncohistones, or expression of oncogenic fusion proteins. These events ultimately promote malignancy through disruption of normal gene regulation and development. The driver protein in Ewing sarcoma, EWS/FLI, is an oncogenic fusion and transcription factor that reshapes the enhancer landscape, resulting in widespread transcriptional dysregulation. Lysine-specific demethylase 1 (LSD1) is a critical functional partner for EWS/FLI as inhibition of LSD1 reverses the transcriptional activity of EWS/FLI. However, how LSD1 participates in fusion-directed epigenomic regulation and aberrant gene activation is unknown. We now show EWS/FLI causes dynamic rearrangement of LSD1 and we uncover a role for LSD1 in gene activation through colocalization at EWS/FLI binding sites throughout the genome. LSD1 is integral to the establishment of Ewing sarcoma super-enhancers at GGAA-microsatellites, which ubiquitously overlap non-microsatellite loci bound by EWS/FLI. Together, we show that EWS/FLI induces widespread changes to LSD1 distribution in a process that impacts the enhancer landscape throughout the genome.


Asunto(s)
Cromatina , Lisina , Línea Celular Tumoral , Niño , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de Fusión Oncogénica/genética , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo
8.
Oncotarget ; 10(39): 3865-3878, 2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31231465

RESUMEN

Ewing sarcoma is the second most common solid bone malignancy diagnosed in pediatric and young adolescent populations. Despite aggressive multi-modal treatment strategies, 5-year event-free survival remains at 75% for patients with localized disease and 20% for patients with metastases. Thus, the need for novel therapeutic options is imperative. Recent studies have focused on epigenetic misregulation in Ewing sarcoma development and potential new oncotargets for treatment. This project focused on the study of LSD2, a flavin-dependent histone demethylase found to be overexpressed in numerous cancers. We previously demonstrated that Ewing sarcoma cell lines are extremely susceptible to small molecule LSD1 blockade with SP-2509. Drug sensitivity correlated with the degree of LSD2 induction following treatment. As such, the purpose of this study was to determine the role of LSD2 in the epigenetic regulation of Ewing sarcoma, characterize genes regulated by LSD2, and examine the impact of SP-2509 drug treatment on LSD2 gene regulation. Genetic depletion (shRNA) of LSD2 significantly impaired oncogenic transformation with only a modest impact on proliferation. Transcriptional analysis of Ewing sarcoma cells following LSD2knockdown revealed modulation of genes primarily involved in metabolic regulation and nervous system development. Gene set enrichment analysis showed that SP-2509 does not impact LSD2 targeted genes. Although there are currently no small molecule agents that specifically target LSD2, our results support further investigations into agents that can inhibit this histone demethylase as a possible treatment for Ewing sarcoma.

9.
Neoplasia ; 20(10): 965-974, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30153557

RESUMEN

A majority of cases of high-risk neuroblastoma, an embryonal childhood cancer, are driven by MYC or MYCN-driven oncogenic signaling. While considered to be directly "undruggable" therapeutically, MYC and MYCN can be repressed transcriptionally by inhibition of Bromodomain-containing protein 4 (BRD4) or destabilized posttranslationally by inhibition of Aurora Kinase A (AURKA). Preclinical and early-phase clinical studies of BRD4 and AURKA inhibitors, however, show limited efficacy against neuroblastoma when used alone. We report our studies on the concomitant use of the BRD4 inhibitor I-BET151 and AURKA inhibitor alisertib. We show that, in vitro, the drugs act synergistically to inhibit viability in four models of high-risk neuroblastoma. We demonstrate that this synergy is driven, in part, by the ability of I-BET151 to mitigate reflexive upregulation of AURKA, MYC, and MYCN in response to AURKA inhibition. We then demonstrate that I-BET151 and alisertib are effective in prolonging survival in four xenograft neuroblastoma models in vivo, and this efficacy is augmented by the addition of the antitubule chemotherapeutic vincristine. These data suggest that epigenetic and posttranslational inhibition of MYC/MYCN-driven pathways may have significant clinical efficacy against neuroblastoma.


Asunto(s)
Aurora Quinasa A/antagonistas & inhibidores , Azepinas/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Neuroblastoma/tratamiento farmacológico , Proteínas Nucleares/antagonistas & inhibidores , Pirimidinas/farmacología , Factores de Transcripción/antagonistas & inhibidores , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Aurora Quinasa A/metabolismo , Azepinas/administración & dosificación , Proteínas de Ciclo Celular , Línea Celular Tumoral , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/administración & dosificación , Humanos , Ratones SCID , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/genética , Neuroblastoma/patología , Proteínas Nucleares/metabolismo , Pirimidinas/administración & dosificación , Tasa de Supervivencia , Factores de Transcripción/metabolismo , Vincristina/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Clin Cancer Res ; 20(16): 4400-12, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24947929

RESUMEN

PURPOSE: Neuroblastoma is an embryonic childhood cancer with high mortality. 13-cis retinoic acid (13-cisRA) improves survival for some patients, but many recur, suggesting clinical resistance. The mechanism of resistance and the normal differentiation pathway are poorly understood. Three-amino-acid loop extension (TALE) family genes are master regulators of differentiation. Because retinoids promote differentiation in neuroblastoma, we evaluated TALE family gene expression in neuroblastoma. EXPERIMENTAL DESIGN: We evaluated expression of TALE family genes in RA-sensitive and -resistant neuroblastoma cell lines, with and without 13-cisRA treatment, identifying genes whose expression correlates with retinoid sensitivity. We evaluated the roles of one gene, PBX1, in neuroblastoma cell lines, including proliferation and differentiation. We evaluated PBX1 expression in primary human neuroblastoma samples by qRT-PCR, and three independent clinical cohort microarray datasets. RESULTS: We confirmed that induction of PBX1 expression, and no other TALE family genes, was associated with 13-cisRA responsiveness in neuroblastoma cell lines. Exogenous PBX1 expression in neuroblastoma cell lines, mimicking induced PBX1 expression, significantly impaired proliferation and anchorage-independent growth, and promoted RA-dependent and -independent differentiation. Reduced PBX1 protein levels produced an aggressive growth phenotype and RA resistance. PBX1 expression correlated with histologic neuroblastoma subtypes, with highest expression in benign ganglioneuromas and lowest in high-risk neuroblastomas. High PBX1 expression is prognostic of survival, including in multivariate analysis, in the three clinical cohorts. CONCLUSIONS: PBX1 is an essential regulator of differentiation in neuroblastoma and potentiates retinoid-induced differentiation. Neuroblastoma cells and tumors with low PBX1 expression have an immature phenotype with poorer prognosis, independent of other risk factors.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Fármacos Dermatológicos/farmacología , Isotretinoína/farmacología , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Adolescente , Western Blotting , Estudios de Cohortes , Proteínas de Unión al ADN/genética , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Estudios de Seguimiento , Humanos , Masculino , Estadificación de Neoplasias , Neuroblastoma/genética , Neuroblastoma/patología , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Pronóstico , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tasa de Supervivencia , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...