Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(52): e2311460120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38127986

RESUMEN

The TP53 gene is mutated in approximately 30% of all breast cancer cases. Adipocytes and preadipocytes, which constitute a substantial fraction of the stroma of normal mammary tissue and breast tumors, undergo transcriptional, metabolic, and phenotypic reprogramming during breast cancer development and play an important role in tumor progression. We report here that p53 loss in breast cancer cells facilitates the reprogramming of preadipocytes, inducing them to acquire a unique transcriptional and metabolic program that combines impaired adipocytic differentiation with augmented cytokine expression. This, in turn, promotes the establishment of an inflammatory tumor microenvironment, including increased abundance of Ly6C+ and Ly6G+ myeloid cells and elevated expression of the immune checkpoint ligand PD-L1. We also describe a potential gain-of-function effect of common p53 missense mutations on the inflammatory reprogramming of preadipocytes. Altogether, our study implicates p53 deregulation in breast cancer cells as a driver of tumor-supportive adipose tissue reprogramming, expanding the network of non-cell autonomous mechanisms whereby p53 dysfunction may promote cancer. Further elucidation of the interplay between p53 and adipocytes within the tumor microenvironment may suggest effective therapeutic targets for the treatment of breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Proteína p53 Supresora de Tumor , Humanos , Femenino , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias de la Mama/patología , Genes p53 , Tejido Adiposo/metabolismo , Adipocitos/metabolismo , Microambiente Tumoral/genética
2.
Mol Oncol ; 17(12): 2675-2693, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37716913

RESUMEN

The core Hippo pathway module consists of a tumour-suppressive kinase cascade that inhibits the transcriptional coactivators Yes-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (WWTR1; also known as TAZ). When the Hippo pathway is downregulated, as often occurs in breast cancer, YAP/TAZ activity is induced. To elaborate the roles of TAZ in triple-negative breast cancer (TNBC), we depleted Taz in murine TNBC 4T1 cells, using either CRISPR/Cas9 or small hairpin RNA (shRNA). TAZ-depleted cells and their controls, harbouring wild-type levels of TAZ, were orthotopically injected into the mammary fat pads of syngeneic BALB/c female mice, and mice were monitored for tumour growth. TAZ depletion resulted in smaller tumours compared to the tumours generated by control cells, in line with the notion that TAZ functions as an oncogene in breast cancer. Tumours, as well as their corresponding in vitro cultured cells, were then subjected to gene expression profiling by RNA sequencing (RNA-seq). Interestingly, pathway analysis of the RNA-seq data indicated a TAZ-dependent enrichment of 'Inflammatory Response', a pathway correlated with TAZ expression levels also in human breast cancer tumours. Specifically, the RNA-seq analysis predicted a significant depletion of regulatory T cells (Tregs) in TAZ-deficient tumours, which was experimentally validated by the staining of tumour sections and by quantitative cytometry by time of flight (CyTOF). Strikingly, the differences in tumour size were completely abolished in immune-deficient mice, demonstrating that the immune-modulatory capacity of TAZ is critical for its oncogenic activity in this setting. Cytokine array analysis of conditioned medium from cultured cells revealed that TAZ increased the abundance of a small group of cytokines, including plasminogen activator inhibitor 1 (Serpin E1; also known as PAI-1), CCN family member 4 (CCN4; also known as WISP-1) and interleukin-23 (IL-23), suggesting a potential mechanistic explanation for its in vivo immunomodulatory effect. Together, our results imply that TAZ functions in a non-cell-autonomous manner to modify the tumour immune microenvironment and dampen the anti-tumour immune response, thereby facilitating tumour growth.


Asunto(s)
Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Neoplasias de la Mama Triple Negativas , Animales , Femenino , Humanos , Ratones , Vía de Señalización Hippo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Transcripción/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...