Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pathogens ; 12(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38133341

RESUMEN

Plant-infecting RNA viruses from 30 families and floating genera, as well as a great number of uncultured as yet-unclassified plant-associated viruses have been described. Even so, the plant RNA virosphere is still underexplored. RNA extracted from enriched virus particles of 50 L water samples from the Teltow Canal and the Havel River in Berlin, Germany, was sequenced using Illumina next-generation sequencing. Sequences were searched for plant viruses with BLAST and DIAMOND. Phylogenetic analyses were conducted with IQ-TREE 2. Altogether, 647 virus sequences greater than 1 kb were detected and further analyzed. These data revealed the presence of accepted and novel viruses related to Albetovirus, Alphaflexiviridae, Aspiviridae, Bromoviridae, Endornaviridae, Partitiviridae, Potyviridae, Solemoviridae, Tombusviridae and Virgaviridae. The vast majority of the sequences were novel and could not be taxonomically assigned. Several tombus- and endorna-like viruses make use of alternative translation tables that suggest unicellular green algae, ciliates, or diplomonades as their hosts. The identification of 27 albeto-like satellite viruses increases available sequence data five-fold. Sixteen new poty-like viruses align with other poty-like viruses in a link that combines the Astroviridae and Potyviridae families. Further, the identification of viruses with peptidase A6-like and peptidase A21-like capsid proteins suggests horizontal gene transfer in the evolution of these viruses.

2.
J Health Monit ; 8(Suppl 3): 62-77, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37342430

RESUMEN

Progressive climate change holds the potential for increasing human health risks from waterborne infections and intoxications, e. g. through an increase in pathogen concentrations in water bodies, through the establishment of new pathogens or through possible changes in pathogen properties. This paper presents some examples of potential impacts of climate change in Germany. Non-cholera Vibrio occur naturally in seawater, but can proliferate significantly in shallow water at elevated temperatures. In the case of Legionella, climate change could lead to temporary or longer-term increased incidences of legionellosis due to the combination of warm and wet weather. Higher temperatures in piped cold water or lower temperatures in piped hot water may also create conditions conducive to higher Legionella concentrations. In nutrient-rich water bodies, increased concentrations of toxigenic cyanobacteria may occur as temperatures rise. Heavy rainfall following storms or prolonged periods of heat and drought can lead to increased levels of human pathogenic viruses being washed into water bodies. Rising temperatures also pose a potential threat to human health through pathogens causing mycoses and facultatively pathogenic micro-organisms: increased infection rates with non-tuberculous mycobacteria or fungi have been documented after extreme weather events.

3.
Microbiol Spectr ; : e0266422, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36700688

RESUMEN

Surveillance of avian influenza viruses (AIV) in wild water bird populations is important for early warning to protect poultry from incursions of high-pathogenicity (HP) AIV. Access to individual water birds is difficult and restricted and limits sampling depth. Here, we focused on environmental samples such as surface water, sediments, and environmentally deposited fresh avian feces as matrices for AIV detection. Enrichment of viral particles by ultrafiltration of 10-L surface water samples using Rexeed-25-A devices was validated using a bacteriophage ϕ6 internal control system, and AIV detection was attempted using real-time RT-PCR and virus isolation. While validation runs suggested an average enrichment of about 60-fold, lower values of 10 to 15 were observed for field water samples. In total 25/36 (60%) of water samples and 18/36 (50%) of corresponding sediment samples tested AIV positive. Samples were obtained from shallow water bodies in habitats with large numbers of waterfowl during an HPAIV epizootic. Although AIV RNA was detected in a substantial percentage of samples virus isolation failed. Virus loads in samples often were too low to allow further sub- and pathotyping. Similar results were obtained with environmentally deposited avian feces. Moreover, the spectrum of viruses detected by these active surveillance methods did not fully mirror an ongoing HPAIV epizootic among waterfowl as detected by passive surveillance, which, in terms of sensitivity, remains unsurpassed. IMPORTANCE Avian influenza viruses (AIV) have a wide host range in the avian metapopulation and, occasionally, transmission to humans also occurs. Surface water plays a particularly important role in the epidemiology of AIV, as the natural virus reservoir is found in aquatic wild birds. Environmental matrices comprising surface water, sediments, and avian fecal matter deposited in the environment were examined for their usefulness in AIV surveillance. Despite virus enrichment efforts, environmental samples regularly revealed very low virus loads, which hampered further sub- and pathotyping. Passive surveillance based on oral and cloacal swabs of diseased and dead wild birds remained unsurpassed with respect to sensitivity.

4.
Arch Virol ; 168(1): 9, 2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36566475

RESUMEN

The order Hepelivirales comprises RNA viruses of four families (Alphatetraviridae, Benyviridae, Hepeviridae, and Matonaviridae). Sequencing of virus genomes from water samples from the Havel River and the Teltow Canal (Teltowkanal) in Berlin, Germany, revealed 25 almost complete and 68 partial genomes of viruses presumably belonging to the order Hepelivirales. Only one of these viruses exhibited a relationship to a known member of this order. The members of one virus clade have a polymerase with a permuted order of the conserved palm subdomain motifs resembling the polymerases of permutotetraviruses and birnaviruses. Overall, our study further demonstrates the diversity of hepeliviruses and indicates the enzootic prevalence of hepeliviruses in unknown hosts.


Asunto(s)
Virus ARN , Humanos , Berlin , Virus ARN/genética , Alemania , Ríos
5.
Front Microbiol ; 13: 865287, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444619

RESUMEN

To improve the understanding of the virome diversity of riverine ecosystems in metropolitan areas, a metagenome analysis was performed with water collected in June 2018 from the river Havel in Berlin, Germany. After enrichment of virus particles and RNA extraction, paired-end Illumina sequencing was conducted and assignment to virus groups and families was performed. This paper focuses on picorna-like viruses, the most diverse and abundant group of viruses with impact on human, animal, and environmental health. Here, we describe altogether 166 viral sequences ranging in size from 1 to 11.5 kb. The 71 almost complete genomes are comprised of one candidate iflavirus, one picornavirus, two polycipiviruses, 27 marnaviruses, 27 dicistro-like viruses, and 13 untypeable viruses. Many partial picorna-like virus sequences up to 10.2 kb were also investigated. The sequences of the Havel picorna-like viruses represent genomes of seven of eight so far known Picornavirales families. Detection of numerous distantly related dicistroviruses suggests the existence of additional, yet unexplored virus groups with dicistronic genomes, including few viruses with unusual genome layout. Of special interest is a clade of dicistronic viruses with capsid protein-encoding sequences at the 5'-end of the genome. Also, monocistronic viruses with similarity of their polymerase and capsid proteins to those of dicistroviruses are interesting. A second protein with NTP-binding site present in the polyprotein of solinviviruses and related viruses needs further attention. The results underline the importance to study the viromes of fluvial ecosystems. So far acknowledged marnaviruses have been isolated from marine organisms. However, the present study and available sequence data suggest that rivers and limnic habitats are relevant ecosystems with circulation of marnaviruses as well as a plethora of unknown picorna-like viruses.

6.
Emerg Microbes Infect ; 11(1): 1250-1261, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35473641

RESUMEN

Mallards (Anas platyrhynchos) are an abundant anseriform migratory wild bird species worldwide and an important reservoir for the maintenance of low pathogenicity (LP) avian influenza viruses (AIV). They have also been implicated in the spread of high pathogenicity (HP) AIV after spill-over events from HPAIV-infected poultry. The spread of HPAIV within wild water bird populations may lead to viral contamination of natural habitats. The role of small shallow water bodies as a transmission medium of AIV among mallards is investigated here in three experimental settings. (i) Delayed onset but rapid progression of infection seeded by two mallards inoculated with either LP or HP AIV to each eight sentinel mallards was observed in groups with access to a small 100 L water pool. In contrast, groups with a bell drinker as the sole source of drinking water showed a rapid onset but lengthened course of infection. (ii) HPAIV infection also set off when virus was dispersed in the water pool; titres as low as 102 TCID50 L-1 (translating to 0.1 TCID50 mL-1) proved to be sufficient. (iii) Substantial loads of viral RNA (and infectivity) were also found on the surface of the birds' breast plumage. "Unloading" of virus infectivity from contaminated plumage into water bodies may be an efficient mechanism of virus spread by infected mallards. However, transposure of HPAIV via the plumage of an uninfected mallard failed. We conclude, surface water in small shallow water bodies may play an important role as a mediator of AIV infection of aquatic wild birds.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Animales Salvajes , Patos , Virus de la Influenza A/genética , Agua
7.
Artículo en Alemán | MEDLINE | ID: mdl-34739549

RESUMEN

Exhaled aerosol particles play an important role in the transmission of SARS-CoV­2, particularly when many people gather indoors. This article summarises the knowledge on virus transmission in schools and practical measures to reduce aerosol-driven infections. A central preventive measure is to enhance room and building ventilation, i.e. the exchange of possibly contaminated indoor air with ambient air. Besides the concentrations of possibly infectious particles, ventilation reduces carbon dioxide concentrations, humidity and other chemical substances in indoor air as well. Irrespective of ventilation, face masks (surgical or FFP2) represent a vital part of hygiene measures. Fixed or mobile air purifiers can support these measures particularly when rooms providing only poor ventilation must be utilized. The article reflects the state of knowledge in October 2021 of the various techniques that have been shown as useful for the prevention of indirect infections. New variants of SARS-CoV­2, the progress of the vaccination campaign in children and adolescents, and the increase in general immunity might require a re-evaluation of the prevention strategies described. The COVID-19 pandemic has revealed common deficits in room and building ventilation, not least in schools. Apart from short-term measures for the prevention of airborne infectious diseases, a long-term strategy seems advisable to alleviate the deficits encountered in schools with respect to room and building ventilation. In view of a permanent improvement of indoor air and prevention against airborne infections the fitting of schools with fixed ventilation systems - preferably including heat and moisture recovery - appears to be a sustainable social investment.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Adolescente , Aerosoles , Niño , Alemania , Humanos , Pandemias , SARS-CoV-2 , Instituciones Académicas
8.
Water Res ; 204: 117648, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34543973

RESUMEN

Pool water is continuously circulated and reused after an extensive treatment including disinfection by chlorination, ozonation or UV treatment. In Germany, these methods are regulated by DIN standard 19643. Recently, the DIN standard has been extended by a new disinfection method using hypobromous acid as disinfectant formed by introducing ozone into water with naturally or artificially high bromide content during water treatment. In this study, we tested the disinfection efficacy of the ozone-bromine treatment in comparison to hypochlorous acid in a flow-through test rig using the bacterial indicator strains Escherichia coli, Enterococcus faecium, Pseudomonas aeruginosa, and Staphylococcus aureus and the viral indicators phage MS2 and phage PRD1. Furthermore, the formation of disinfection by-products and their potential toxic effects were investigated in eight pool water samples using different disinfection methods including the ozone-bromine treatment. Our results show that the efficacy of hypobromous acid, depending on its concentration and the tested organism, is comparable to that of hypochlorous acid. Hypobromous acid was effective against five of six tested indicator organisms. However, using Pseudomonas aeruginosa and drinking water as test water, both tested disinfectants (0.6 mg L-1 as Cl2 hypobromous acid as well as 0.3 mg L-1 as Cl2 hypochlorous acid) did not achieve a reduction of four log10 levels within 30 s, as required by DIN 19643. The formation of brominated disinfection by-products depends primarily on the bromide concentration of the filling water, with the treatment method having a smaller effect. The eight pool water samples did not show critical values in vitro for acute cytotoxicity or genotoxicity in the applied assays. In real pool water samples, the acute toxicological potential was not higher than for conventional disinfection methods. However, for a final assessment of toxicity, all single substance toxicities of known DBPs present in pool water treated by the ozone-bromine treatment have to be analyzed additionally.


Asunto(s)
Desinfectantes , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Bromo , Cloro , Desinfección , Halogenación , Agua , Contaminantes Químicos del Agua/análisis
9.
Food Environ Virol ; 12(2): 137-147, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32172512

RESUMEN

In highly populated areas, environmental surveillance of wastewater and surface waters is a key factor to control the circulation of viruses and risks for public health. Hepatitis E virus (HEV) genotype 3 is considered as an emerging pathogen in industrialized countries. Therefore, this study was carried out to determine the prevalence of HEV in environmental waters in urban and suburban regions in Germany. HEV was monitored in water samples using quantitative RT-PCR (RT-qPCR) and nested RT-PCR without or with virus concentration via polyethylene glycol precipitation or ultracentrifugation. By RT-qPCR, 84-100% of influent samples of wastewater treatment plants were positive for HEV RNA. Genotypes HEV-3c and 3f were identified in wastewater, with HEV-3c being the most prevalent genotype. These data correlate with subtypes identified earlier in patients from the same area. Comparison of wastewater influent and effluent samples revealed a reduction of HEV RNA of about 1 log10 during passage through wastewater treatment plants. In addition, combined sewer overflows (CSOs) after heavy rainfalls were shown to release HEV RNA into surface waters. About 75% of urban river samples taken during these CSO events were positive for HEV RNA by RT-qPCR. In contrast, under normal weather conditions, only around 30% of river samples and 15% of samples from a bathing water located at an urban river were positive for HEV. Median concentrations of HEV RNA of all tested samples at this bathing water were below the limit of detection.


Asunto(s)
Virus de la Hepatitis E/genética , Hepatitis E/virología , Ríos/virología , Aguas Residuales/virología , Monitoreo del Ambiente , Genotipo , Alemania , Virus de la Hepatitis E/clasificación , Virus de la Hepatitis E/aislamiento & purificación , Humanos , ARN Viral/genética
10.
Int J Hyg Environ Health ; 221(8): 1124-1132, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30098909

RESUMEN

New disinfection procedures are being developed and proposed for use in drinking-water production. Authorising their use requires an effective test strategy that can simulate conditions in practice. For this purpose, we developed a test rig working in a flow-through mode similar to the disinfection procedures in waterworks, but under tightly defined conditions, including very short contact times. To quantify the influence of DOC, temperature and pH on the efficacy of two standard disinfectants, chlorine and chlorine dioxide, simulated use tests were systematically performed. This test rig enabled quantitative comparison of the reduction of four test organisms, two viruses and two bacteria, in response to disinfection. Chlorine was substantially more effective against Enterococcus faecium than chlorine dioxide whereas the latter was more effective against the bacteriophage MS2, especially at pH values of >7.5 at which chlorine efficacies already decline. Contrary to expectation, bacteria were not generally reduced more quickly than viruses. Overall, the results confirm a high efficacy of chlorine and chlorine dioxide, validating them as standard disinfectants for assessing the efficacy of new disinfectants. Furthermore, these data demonstrate that the test rig is an appropriate tool for testing new disinfectants as well as disinfection procedures.


Asunto(s)
Compuestos de Cloro/farmacología , Cloro/farmacología , Desinfectantes/farmacología , Desinfección/métodos , Agua Potable/microbiología , Óxidos/farmacología , Purificación del Agua/métodos , Bacteriófago PRD1/efectos de los fármacos , Bacteriófago PRD1/crecimiento & desarrollo , Carbono/análisis , Enterococcus faecium/efectos de los fármacos , Enterococcus faecium/crecimiento & desarrollo , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Levivirus/efectos de los fármacos , Levivirus/crecimiento & desarrollo , Temperatura
11.
Food Environ Virol ; 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25786890

RESUMEN

Experiments to determine the removal of viruses in different types of water (surface water from two reservoirs for drinking water treatment, treated groundwater and groundwater contaminated with either 5 or 30 % of wastewater) by ultrafiltration were performed with a semi-technical ultrafiltration unit. Concentrations of human adenoviruses (HAdVs), murine norovirus (MNV), and the bacteriophages MS2, ΦX174 and PRD1 were measured in the feed water and the filtrate, and log removal values were calculated. Bacteria added to the feed water were not detected in the filtrates. In contrast, in most cases viruses and bacteriophages were still present in the filtrates: log removal values were in the range of 1.4-6.3 depending on virus sizes and water qualities. Best removals were observed with bacteriophage PRD1 and HAdVs, followed by MNV and phages MS2 and ΦX174. Virus size, however, was not the only criterion for efficient removal. In diluted wastewater as compared to drinking water and uncontaminated environmental waters, virus removal was clearly higher for all viruses, most likely due to higher membrane fouling. For quality assessment purposes of membrane filtration efficiencies with regard to the elimination of human viruses the small bacteriophages MS2 and ΦX174 should be used as conservative viral indicators.

12.
Sci Total Environ ; 518-519: 130-8, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25747372

RESUMEN

Redox conditions are known to affect the fate of viruses in porous media. Several studies report the relevance of colloid-facilitated virus transport in the subsurface, but detailed studies on the effect of anoxic conditions on virus retention in natural sediments are still missing. Therefore, we investigated the fate of viruses in natural flood plain sediments with different sesquioxide contents under anoxic conditions by considering sorption to the solid phase, sorption to mobilized colloids, and inactivation in the aqueous phase. Batch experiments were conducted under oxic and anoxic conditions at pH values between 5.1 and 7.6, using bacteriophages MS2 and PhiX174 as model viruses. In addition to free and colloid-associated bacteriophages, dissolved and colloidal concentrations of Fe, Al and organic C as well as dissolved Ca were determined. Results showed that regardless of redox conditions, bacteriophages did not adsorb to mobilized colloids, even under favourable charge conditions. Under anoxic conditions, attenuation of bacteriophages was dominated by sorption over inactivation, with MS2 showing a higher degree of sorption than PhiX174. Inactivation in water was low under anoxic conditions for both bacteriophages with about one log10 decrease in concentration during 16 h. Increased Fe/Al concentrations and a low organic carbon content of the sediment led to enhanced bacteriophage removal under anoxic conditions. However, even in the presence of sufficient Fe/A-(hydr)oxides on the solid phase, bacteriophage sorption was low. We presume that organic matter may limit the potential retention of sesquioxides in anoxic sediments and should thus be considered for the risk assessment of virus breakthrough in the subsurface.


Asunto(s)
Bacteriófagos/química , Coloides/química , Sedimentos Geológicos/virología , Microbiología del Suelo , Adsorción , Oxidación-Reducción , Porosidad
13.
Int J Hyg Environ Health ; 217(8): 861-70, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25024100

RESUMEN

To protect groundwater as a drinking water resource from microbiological contamination, protection zones are installed. While travelling through these zones, concentrations of potential pathogens should decline to levels that pose no risks to human health. Removal of viruses during subsurface passage is influenced by physicochemical conditions, such as oxygen concentration, which also affects virus survival. The aim of our study was to evaluate the effect of redox conditions on the removal of viruses during sand filtration. Experiments in glass columns filled with medium-grained sand were conducted to investigate virus removal in the presence and absence of dissolved oxygen. Bacteriophages MS2 and PhiX174, as surrogates for human enteric viruses were spiked in pulsed or in continuous mode and pumped through the columns at a filter velocity of about 1m/d. Virus breakthrough curves were analyzed by calculating total viral elimination and fitted using one-dimensional transport models (CXTFIT and HYDRUS-1D). While short-term experiments with pulsed virus application showed only small differences with regard to virus removal under oxic and anoxic conditions, a long-term experiment with continuous dosing revealed a clearly lower elimination of viruses under anoxic conditions. These findings suggest that less inactivation and less adsorption of viruses in anoxic environments affect their removal. Therefore, in risk assessment studies aimed to secure drinking water resources from viral contamination and optimization of protection zones, the oxic and anoxic conditions in the subsurface should also be considered.


Asunto(s)
Agua Potable/virología , Agua Subterránea/virología , Oxígeno , Dióxido de Silicio , Virus , Microbiología del Agua , Purificación del Agua/métodos , Adsorción , Filtración , Humanos , Levivirus , Modelos Teóricos , Oxidación-Reducción
14.
Water Sci Technol ; 69(2): 364-70, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24473307

RESUMEN

In contrast to previous discussion on general virus removal efficiency and identifying surrogates for human pathogenic viruses, this study focuses on virus retention within each step of a wastewater treatment plant (WWTP). Additionally, the influence of weather conditions on virus removal was addressed. To account for the virus retention, this study describes a mass balance of somatic coliphages (bacterial viruses) in a municipal WWTP, performed in the winter and summer seasons of 2011. In the winter season, the concentration of coliphages entering the WWTP was about 1 log lower than in summer. The mass balance in winter revealed a virus inactivation of 85.12 ± 13.97%. During the summer season, virus inactivation was significantly higher (95.25 ± 3.69%, p-value <0.05), most likely due to additional virus removal in the secondary clarifier by insolation. Thus, a total removal of coliphages of about 2.78 log units was obtained in summer compared to 1.95 log units in winter. Rainfall events did not statistically correlate with the concentrations of coliphages entering the WWTP in summer.


Asunto(s)
Estaciones del Año , Eliminación de Residuos Líquidos/métodos , Colifagos/aislamiento & purificación , Aguas del Alcantarillado/virología , Virus/aislamiento & purificación
15.
Virol J ; 10: 190, 2013 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-23758742

RESUMEN

BACKGROUND: Human adenoviruses are promising candidates for addressing health risks associated with enteric viruses in environmental waters. Relatively harmless but common, these DNA viruses persist within the population and are generally considered extremely stable, remaining infectious in water for long periods of time. Group-specific or single species detection of human adenoviruses in environmental samples is usually based on polymerase chain reaction assays. Simultaneous identification of specific species or serotypes needs additional processing. Here we present a simple molecular approach for the monitoring of serotypic diversity in the human adenovirus populations in contaminated water sites. METHODS: Diversity patterns of human adenoviruses in environmental samples, collected in an outdoor artificial stream and pond simulation system, were analyzed using a closed tube polymerase chain reaction method with subsequent melting point analysis. RESULTS: Human adenovirus serotype 41 was the most prominent adenovirus serotype detected in environmental water samples, but melting point analyses indicated the presence of additional adenovirus serotypes. CONCLUSIONS: Based on investigations with spiked and environmental samples, a combination of qPCR and melting point analysis was shown to identify adenovirus serotypes in sewage contaminated water.


Asunto(s)
Adenovirus Humanos/clasificación , Adenovirus Humanos/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Aguas del Alcantarillado/virología , Temperatura de Transición , Virología/métodos , Microbiología del Agua , Adenovirus Humanos/genética , Humanos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
16.
Environ Sci Technol ; 46(18): 10073-80, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22917471

RESUMEN

We present a rapid and effective adsorption-elution method based on monolithic affinity filtration (MAF) for the concentration and purification of waterborne viruses. The MAF column consists of a hydrolyzed macroporous epoxy-based polymer. High recoveries were achieved by columns for the bacterial virus (bacteriophage) MS2 110 (±19)%, as model organism, as well as for human adenoviruses 42.4 (±3.4)% and murine noroviruses 42.6 (±1.9)%. This new concentration and purification method was combined with crossflow ultrafiltration (CUF). Because of the adsorption of the examined viruses to the macroporous surface of the MAF column at pH 3, concentrated matrix components by CUF can be removed. Bacteriophages MS2 were spiked in tap water and concentrated with the new CUF-MAF concentration method by a volumetric factor of 10(4) within 33 min. Furthermore, the detection limit for quantification of bacteriophage MS2 by quantitative reverse transcriptase PCR (qRT-PCR) could be improved from 79.47 to 0.0056 GU mL(-1) by a factor of 1.4 × 10(4). In a first study, we have shown that this method could also be applied for river water containing naturally MS2 and MS2-like phages.


Asunto(s)
Adenoviridae/aislamiento & purificación , Levivirus/aislamiento & purificación , Norovirus/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/instrumentación , Ríos/microbiología , Ultrafiltración/instrumentación , Adenoviridae/genética , Animales , Línea Celular , Diseño de Equipo , Humanos , Levivirus/genética , Límite de Detección , Ratones , Norovirus/genética , ARN Viral/genética , ARN Viral/aislamiento & purificación
17.
J Virol ; 81(20): 10970-80, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17686860

RESUMEN

Infection with various human papillomaviruses (HPVs) induces cervical cancers. Cell surface heparan sulfates (HS) have been shown to serve as primary attachment receptors, and molecules with structural similarity to cell surface HS, like heparin, function as competitive inhibitors of HPV infection. Here we demonstrate that the N,N'-bisheteryl derivative of dispirotripiperazine, DSTP27, efficiently blocks papillomavirus infection by binding to HS moieties, with 50% inhibitory doses of up to 0.4 mug/ml. In contrast to short-term inhibitory effects of heparin, pretreatment of cells with DSTP27 significantly reduced HPV infection for more than 30 h. Using DSTP27 and heparinase, we furthermore demonstrate that HS moieties, rather than laminin 5, present in the extracellular matrix (ECM) secreted by keratinocytes are essential for infectious transfer of ECM-bound virions to cells. Prior binding to ECM components, especially HS, partially alleviated the requirement for cell surface HS. DSTP27 blocks infection by cell-bound virions by feeding into a noninfectious entry pathway. Under these conditions, virus colocalized with HS moieties in endocytic vesicles. Similarly, postattachment treatment of cells with heparinase, cytochalasin D, or neutralizing antibodies resulted in uptake of virions without infection, indicating that deviation into a noninfectious entry pathway is a major mode of postattachment neutralization. In untreated cells, initial colocalization of virions with HS on the cell surface and in endocytic vesicles was lost with time. Our data suggest that initial attachment of HPV to HS proteoglycans (HSPGs) must be followed by secondary interaction with additional HS side chains and transfer to a non-HSPG receptor for successful infection.


Asunto(s)
Heparitina Sulfato/antagonistas & inhibidores , Papillomaviridae/patogenicidad , Receptores Virales/efectos de los fármacos , Anticuerpos/farmacología , Unión Competitiva , Línea Celular , Endocitosis , Proteoglicanos de Heparán Sulfato , Humanos , Oxadiazoles/farmacología , Pirimidinas/farmacología , Receptores Virales/metabolismo
18.
J Biol Chem ; 282(38): 27913-22, 2007 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-17640876

RESUMEN

Efficient infection of cells by human papillomaviruses (HPVs) and pseudovirions requires primary interaction with cell surface proteoglycans with apparent preference for species carrying heparan sulfate (HS) side chains. To identify residues contributing to virus/cell interaction, we performed point mutational analysis of the HPV16 major capsid protein, L1, targeting surface-exposed amino acid residues. Replacement of lysine residues 278, 356, or 361 for alanine reduced cell binding and infectivity of pseudovirions. Various combinations of these amino acid exchanges further decreased cell attachment and infectivity with residual infectivity of less than 5% for the triple mutant, suggesting that these lysine residues cooperate in HS binding. Single, double, or triple exchanges for arginine did not impair infectivity, demonstrating that interaction is dependent on charge distribution rather than sequence-specific. The lysine residues are located within a pocket on the capsomere surface, which was previously proposed as the putative receptor binding site. Fab fragments of binding-neutralizing antibody H16.56E that recognize an epitope directly adjacent to lysine residues strongly reduced HS-mediated cell binding, further corroborating our findings. In contrast, mutation of basic surface residues located in the cleft between capsomeres outside this pocket did not significantly reduce interaction with HS or resulted in assembly-deficient proteins. Computer-simulated heparin docking suggested that all three lysine residues can form hydrogen bonds with 2-O-, 6-O-, and N-sulfate groups of a single HS molecule with a minimal saccharide domain length of eight monomer units. This prediction was experimentally confirmed in binding experiments using capsid protein, heparin molecules of defined length, and sulfate group modifications.


Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/fisiología , Membrana Celular/metabolismo , Heparitina Sulfato/química , Proteínas Oncogénicas Virales/química , Proteínas Oncogénicas Virales/fisiología , Animales , Anticuerpos/química , Células COS , Cápside/química , Chlorocebus aethiops , Simulación por Computador , Heparina/química , Humanos , Lisina/química , Mutagénesis , Unión Proteica , Propiedades de Superficie
19.
Virol J ; 3: 83, 2006 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-17014700

RESUMEN

BACKGROUND: Infections with papillomaviruses induce type-specific immune responses, mainly directed against the major capsid protein, L1. Based on the propensity of the L1 protein to self-assemble into virus-like particles (VLPs), type-specific vaccines have already been developed. In order to generate vaccines that target a broader spectrum of HPV types, extended knowledge of neutralizing epitopes is required. Despite the association of human papillomavirus type 33 (HPV33) with cervical carcinomas, fine mapping of neutralizing conformational epitopes on HPV33 has not been reported yet. By loop swapping between HPV33 and HPV16 capsid proteins, we have identified amino acid sequences critical for the binding of conformation-dependent type-specific neutralizing antibodies to surface-exposed hyper variable loops of HPV33 capsid protein L1. RESULTS: Reactivities of monoclonal antibodies (mAbs) H33.B6, H33.E12, H33.J3 and H16.56E with HPV16:33 and HPV33:16 hybrid L1 VLPs revealed the complex structures of their conformational epitopes as well as the major residues contributing to their binding sites. Whereas the epitope of mAb H33.J3 was determined by amino acids (aa) 51-58 in the BC loop of HPV33 L1, sequences of at least two hyper variable loops, DE (aa 132-140) and FGb (aa 282-291), were found to be essential for binding of H33.B6. The epitope of H33.E12 was even more complex, requiring sequences of the FGa loop (aa 260-270), in addition to loops DE and FGb. CONCLUSION: These data demonstrate that neutralizing epitopes in HPV33 L1 are mainly located on the tip of the capsomere and that several hyper variable loops contribute to form these conformational epitopes. Knowledge of the antigenic structure of HPV is crucial for designing hybrid particles as a basis for intertypic HPV vaccines.


Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/inmunología , Epítopos/inmunología , Papillomaviridae/química , Papillomaviridae/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Regiones Determinantes de Complementariedad/inmunología , Epítopos/química , Humanos , Modelos Moleculares , Pruebas de Neutralización , Papillomaviridae/clasificación , Conformación Proteica
20.
J Virol ; 80(2): 759-68, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16378978

RESUMEN

Papillomaviruses are internalized via clathrin-dependent endocytosis. However, the mechanism by which viral genomes pass endosomal membranes has not been elucidated. In this report we show that the minor capsid protein L2 is required for egress of viral genomes from endosomes but not for initial uptake and uncoating and that a 23-amino-acid peptide at the C terminus of L2 is necessary for this function. Pseudogenomes encapsidated by L1 and L2 lacking this peptide accumulated in vesicular compartments similar to that observed with L1-only viral particles, and these mutant pseudoviruses were noninfectious. This L2 peptide displayed strong membrane-disrupting activity, induced cytolysis of bacteria and eukaryotic cells in a pH-dependent manner, and permeabilized cells after exogenous addition. Fusions between green fluorescent protein and the L2 peptide integrated into cellular membranes like the wild type but not like C-terminal mutants of L2. Our data indicate that the L2 C terminus facilitates escape of viral genomes from the endocytic compartment and that this feature is conserved among papillomaviruses. Furthermore, the characteristic of this peptide differs from the classical virus-encoded membrane-penetrating peptides.


Asunto(s)
Proteínas de la Cápside/genética , Papillomaviridae/fisiología , Secuencia de Aminoácidos , Animales , Línea Celular , Endosomas/virología , Genoma Viral , Humanos , Datos de Secuencia Molecular , Mutación , Infecciones por Papillomavirus/virología , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...