Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EBioMedicine ; 104: 105174, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821021

RESUMEN

BACKGROUND: Chest X-rays (CXR) are essential for diagnosing a variety of conditions, but when used on new populations, model generalizability issues limit their efficacy. Generative AI, particularly denoising diffusion probabilistic models (DDPMs), offers a promising approach to generating synthetic images, enhancing dataset diversity. This study investigates the impact of synthetic data supplementation on the performance and generalizability of medical imaging research. METHODS: The study employed DDPMs to create synthetic CXRs conditioned on demographic and pathological characteristics from the CheXpert dataset. These synthetic images were used to supplement training datasets for pathology classifiers, with the aim of improving their performance. The evaluation involved three datasets (CheXpert, MIMIC-CXR, and Emory Chest X-ray) and various experiments, including supplementing real data with synthetic data, training with purely synthetic data, and mixing synthetic data with external datasets. Performance was assessed using the area under the receiver operating curve (AUROC). FINDINGS: Adding synthetic data to real datasets resulted in a notable increase in AUROC values (up to 0.02 in internal and external test sets with 1000% supplementation, p-value <0.01 in all instances). When classifiers were trained exclusively on synthetic data, they achieved performance levels comparable to those trained on real data with 200%-300% data supplementation. The combination of real and synthetic data from different sources demonstrated enhanced model generalizability, increasing model AUROC from 0.76 to 0.80 on the internal test set (p-value <0.01). INTERPRETATION: Synthetic data supplementation significantly improves the performance and generalizability of pathology classifiers in medical imaging. FUNDING: Dr. Gichoya is a 2022 Robert Wood Johnson Foundation Harold Amos Medical Faculty Development Program and declares support from RSNA Health Disparities grant (#EIHD2204), Lacuna Fund (#67), Gordon and Betty Moore Foundation, NIH (NIBIB) MIDRC grant under contracts 75N92020C00008 and 75N92020C00021, and NHLBI Award Number R01HL167811.


Asunto(s)
Diagnóstico por Imagen , Curva ROC , Humanos , Diagnóstico por Imagen/métodos , Algoritmos , Radiografía Torácica/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Bases de Datos Factuales , Área Bajo la Curva , Modelos Estadísticos
2.
Radiology ; 305(2): 454-465, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35852426

RESUMEN

Background Developing deep learning models for radiology requires large data sets and substantial computational resources. Data set size limitations can be further exacerbated by distribution shifts, such as rapid changes in patient populations and standard of care during the COVID-19 pandemic. A common partial mitigation is transfer learning by pretraining a "generic network" on a large nonmedical data set and then fine-tuning on a task-specific radiology data set. Purpose To reduce data set size requirements for chest radiography deep learning models by using an advanced machine learning approach (supervised contrastive [SupCon] learning) to generate chest radiography networks. Materials and Methods SupCon helped generate chest radiography networks from 821 544 chest radiographs from India and the United States. The chest radiography networks were used as a starting point for further machine learning model development for 10 prediction tasks (eg, airspace opacity, fracture, tuberculosis, and COVID-19 outcomes) by using five data sets comprising 684 955 chest radiographs from India, the United States, and China. Three model development setups were tested (linear classifier, nonlinear classifier, and fine-tuning the full network) with different data set sizes from eight to 85. Results Across a majority of tasks, compared with transfer learning from a nonmedical data set, SupCon reduced label requirements up to 688-fold and improved the area under the receiver operating characteristic curve (AUC) at matching data set sizes. At the extreme low-data regimen, training small nonlinear models by using only 45 chest radiographs yielded an AUC of 0.95 (noninferior to radiologist performance) in classifying microbiology-confirmed tuberculosis in external validation. At a more moderate data regimen, training small nonlinear models by using only 528 chest radiographs yielded an AUC of 0.75 in predicting severe COVID-19 outcomes. Conclusion Supervised contrastive learning enabled performance comparable to state-of-the-art deep learning models in multiple clinical tasks by using as few as 45 images and is a promising method for predictive modeling with use of small data sets and for predicting outcomes in shifting patient populations. © RSNA, 2022 Online supplemental material is available for this article.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , Radiografía Torácica/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Pandemias , COVID-19/diagnóstico por imagen , Estudios Retrospectivos , Radiografía , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...