Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bone ; 51(2): 224-31, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22146554

RESUMEN

Increased proteoglycan (PG) synthesis is essential for the stimulation of cartilage repair processes that take place during the reversible phase of osteoarthritis (OA). In articular cartilage, xylosyltransferase 1 (Xylt1) is the key enzyme that initiates glycosaminoglycan (GAG) chain synthesis by transferring the first sugar residue to the PG core protein. Biological activity of PGs is closely linked to GAG biosynthesis since their polyanionic nature directly contributes to the proper hydration and elastic properties of the cartilage tissue present at the articular interface. The aim of this study was to investigate whether variations in the level of Xylt1 present in serum can be used to predict OA disease progression. The influence of bone forming activity on the systemic release of this enzyme was addressed by experimentally-inducing OA in mice of two different genetic backgrounds that were previously characterized for their distinct bone metabolism: C57BL/6J (B6, high bone remodelers) or C3H/HeJ (C3H, high bone formers). Serum was collected after medial meniscectomy or sham surgeries in young adult mice of these two strains over a period of 3.5months at which point knee histopathology was assessed. A significant increase in serum Xylt1 levels observed shortly after meniscectomy positively correlated with severe cartilage damage evaluated by histological assessment at later time points in mice of the C3H background. In contrast, no temporal regulation of Xylt1 level was found between meniscectomies and control surgeries in B6 mice, which developed OA at a slower rate. Additionally, longitudinal evaluation of the serum levels of other markers of cartilage/bone metabolism (C1,2C, osteocalcin) did not reveal any association with late knee damages. Our results strongly support the idea that serum Xylt1 has a clinical value for monitoring risk of OA progression in young adults with high bone forming potential. Ultimately, the understanding of posttraumatic mechanisms regulating PG synthesis and their modification by GAG will be essential so that interventions that stimulate cartilage regrowth can be undertaken prior to irreversible destruction of the joint tissue. This article is part of a Special Issue entitled "Osteoarthritis".


Asunto(s)
Osteoartritis/sangre , Osteoartritis/enzimología , Osteogénesis/fisiología , Pentosiltransferasa/sangre , Heridas y Lesiones/sangre , Heridas y Lesiones/enzimología , Animales , Biomarcadores/sangre , Cartílago Articular/patología , Colágeno/metabolismo , Progresión de la Enfermedad , Epítopos/inmunología , Masculino , Meniscos Tibiales/cirugía , Ratones , Ratones Endogámicos C57BL , Osteoartritis/etiología , Osteoartritis/fisiopatología , Osteocalcina/sangre , Proteolisis , Heridas y Lesiones/complicaciones , UDP Xilosa Proteína Xilosiltransferasa
2.
Dev Cell ; 14(1): 120-31, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18160348

RESUMEN

Secreted Wnt proteins play essential roles in many biological processes during development and diseases. However, little is known about the mechanism(s) controlling Wnt secretion. Recent studies have identified Wntless (Wls) and the retromer complex as essential components involved in Wnt signaling. While Wls has been shown to be essential for Wnt secretion, the function(s) of the retromer complex in Wnt signaling is unknown. Here, we have examined a role of Vps35, an essential retromer subunit, in Wnt signaling in Drosophila and mammalian cells. We provide compelling evidence that the retromer complex is required for Wnt secretion. Importantly, Vps35 colocalizes in endosomes and interacts with Wls. Wls becomes unstable in the absence of retromer activity. Our findings link Wls and retromer functions in the same conserved Wnt secretion pathway. We propose that retromer influences Wnt secretion by recycling Wntless from endosomes to the trans-Golgi network (TGN).


Asunto(s)
Membrana Celular/fisiología , Proteínas de Drosophila/fisiología , Drosophila/embriología , Endosomas/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Wnt/metabolismo , Red trans-Golgi/fisiología , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrión no Mamífero/fisiología , Homeostasis , Transducción de Señal , Proteínas de Transporte Vesicular/fisiología , Proteínas Wnt/genética
3.
Methods Mol Biol ; 397: 129-44, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18025719

RESUMEN

Many of the genes of Drosophila melanogaster have their transcripts deposited in developing oocytes. These maternally loaded gene products enable an otherwise homo-zygous mutant embryo to survive beyond the first stage of development for which the gene product is required. Zygotic mutations that disrupt the Hedgehog signal transduction pathway typically yield a segment polarity 'lawn of denticles' cuticle phenotype. However, an embryo homozygous mutant for a gene can achieve normal embryonic segmentation precluding classification of the gene as a component of the Hh pathway, if wild-type transcripts from the mother are present. This chapter discusses the theory and importance of analyzing germline clone embryos for maternally acting genes involved in Hh signal transduction, and describes in detail the method to generate mutant germline clone embryos.


Asunto(s)
Drosophila melanogaster/metabolismo , Células Germinativas/citología , Células Germinativas/metabolismo , Proteínas Hedgehog/metabolismo , Biología Molecular/métodos , Animales , Células Clonales , Cruzamientos Genéticos , Drosophila melanogaster/embriología , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Femenino , Homocigoto , Masculino , Mutación/genética , Oogénesis , Fenotipo
4.
Development ; 133(24): 4901-11, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17108000

RESUMEN

Wingless (Wg) is a secreted ligand that differentially activates gene expression in target tissues. It belongs to the Wnt family of secreted signaling molecules that regulate cell-to-cell interactions during development. Activation of Wg targets is dependent on the ligand concentration in the extracellular milieu; cellular mechanisms that govern the synthesis, delivery and receipt of Wg are elaborate and complex. We have identified sprinter (srt), which encodes a novel, evolutionarily conserved transmembrane protein required for the transmission of the Wg signal. Mutations in srt cause the accumulation of Wg in cells that express it, and retention of the ligand prevents activation of its target genes in signal-receiving cells. In the absence of Srt activity, levels of Wg targets (including Engrailed in embryos lacking maternal and zygotic srt, and Senseless and Achaete in wing discs) are reduced. Activation of Wg targets in the receiving cells does not require srt. Hence, the function of Srt is restricted to events occurring within the Wg-producing cells. We show that srt is not required for any aspect of Hedgehog (Hh) signal transduction, suggesting specificity of srt for the Wg pathway. We propose that srt encodes a protein required for Wg secretion that regulates maturation, membrane targeting or delivery of Wg. Loss of srt function in turn diminishes Wg-pathway activation in receiving cells.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Embrión no Mamífero/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Evolución Biológica , Tipificación del Cuerpo , Codón sin Sentido , Secuencia Conservada , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Desarrollo Embrionario , Femenino , Proteínas Hedgehog/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Masculino , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Transporte de Proteínas , Alineación de Secuencia , Alas de Animales/embriología , Alas de Animales/crecimiento & desarrollo , Proteínas Wnt/metabolismo , Proteína Wnt1
5.
Dev Biol ; 276(1): 89-100, 2004 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-15531366

RESUMEN

We have examined the respective contribution of Heparan Sulfate Proteoglycans (HSPGs) and Frizzled (Fz) proteins in the establishment of the Wingless (Wg) morphogen gradient. From the analysis of mutant clones of sulfateless/N-deacetylase-sulphotransferase in the wing imaginal disc, we find that lack of Heparan Sulfate (HS) causes a dramatic reduction of both extracellular and intracellular Wg in receiving cells. Our studies, together with others [Kirkpatrick, C.A., Dimitroff, B.D., Rawson, J.M., Selleck, S.B., 2004. Spatial regulation of Wingless morphogen distribution and signalling by Dally-like protein. Dev. Cell (in press)], reveals that the Glypican molecule Dally-like Protein (Dlp) is associated with both negative and positive roles in Wg short- and long-range signaling, respectively. In addition, analyses of the two Fz proteins indicate that the Fz and DFz2 receptors, in addition to transducing the signal, modulate the slope of the Wg gradient by regulating the amount of extracellular Wg. Taken together, our analysis illustrates how the coordinated activities of HSPGs and Fz/DFz2 shape the Wg morphogen gradient.


Asunto(s)
Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteoglicanos de Heparán Sulfato/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Células Clonales , Drosophila/embriología , Drosophila/crecimiento & desarrollo , Receptores Frizzled , Genes de Insecto , Proteoglicanos de Heparán Sulfato/genética , Proteínas de Insectos/genética , Modelos Biológicos , Mutación , Proteoglicanos/metabolismo , Interferencia de ARN , Receptores Acoplados a Proteínas G , Transducción de Señal , Distribución Tisular , Alas de Animales/embriología , Alas de Animales/crecimiento & desarrollo , Proteína Wnt1
6.
EMBO J ; 22(14): 3635-44, 2003 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-12853478

RESUMEN

Sulfation of all macromolecules entering the secretory pathway in higher organisms occurs in the Golgi and requires the high-energy sulfate donor adenosine 3'-phosphate 5'-phosphosulfate. Here we report the first molecular identification of a gene that encodes a transmembrane protein required to transport adenosine 3'-phosphate 5'-phosphosulfate from the cytosol into the Golgi lumen. Mutations in this gene, which we call slalom, display defects in Wg and Hh signaling, which are likely due to the lack of sulfation of glycosaminoglycans by the sulfotransferase sulfateless. Analysis of mosaic mutant ovaries shows that sll function is also essential for dorsal-ventral axis determination, suggesting that sll transports the sulfate donor required for sulfotransferase activity of the dorsal-ventral determinant pipe.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Drosophila/genética , Genes de Insecto , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Fosfoadenosina Fosfosulfato/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico , Tipificación del Cuerpo/genética , Citosol/metabolismo , Proteínas de Drosophila/química , Femenino , Expresión Génica , Aparato de Golgi/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Datos de Secuencia Molecular , Mutación , Ovario/metabolismo , Proteoglicanos/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Transportadores de Sulfato , Sulfatos/metabolismo , Alas de Animales/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...