Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
RSC Med Chem ; 14(11): 2315-2326, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38020070

RESUMEN

In this study, combining the thiazole and cinnamoyl groups into the styryl-thiazole scaffold, a series of novel styryl-thiazole hybrids (6a-p) was rationally designed, synthesized, and evaluated by the multi-target-directed ligands strategy as potential candidates for the treatment of Alzheimer's disease (AD). Hybrids 6e and 6i are the most promising among the synthesized hybrids since they are able to significantly increase cell viabilities in Aß1-42-exposed-human neuroblastoma cell line (6i at the concentration of 50 µg mL-1 and 6e at the concentration of 25 µg mL-1 resulted in ∼34% and ∼30% increase in cell viabilities, respectively). Compounds 6e and 6i exhibit highly AChE inhibitory properties in the experimental AD model at 375.6 ± 18.425 mU mL-1 and 397.6 ± 32.152 mU mL-1, respectively. Moreover, these data were also confirmed by docking studies and in vitro enzyme inhibition assays. Compared to hybrid 6e and according to the results, 6i also has the highest potential against Aß1-42 aggregation with over 80% preventive activity. The in silico prediction of the physicochemical properties confirms that 6i possesses a better profile compared to 6e. Therefore, compound 6i presents a promising multi-targeted active molecular profile for treating AD considering the multifactorial nature of AD, and it is reasonable to deepen its mechanisms of action in an in vivo experimental model of AD.

2.
J Mater Chem B ; 11(19): 4287-4295, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37144344

RESUMEN

Two novel anthracene derivatives were synthesized, and detailed photo-physical and biological investigations were carried out using a variety of spectroscopy techniques. The effect of cyano (-CN) substitution was found to be effective to alter the charge population and frontier orbital energy levels via Density Functional Theory (DFT) calculations. Particularly, the introduction of styryl and triphenylamine groups attached to the anthracene core helped to increase the conjugation relative to the anthracene moiety. The results revealed that the molecules have intramolecular charge transfer (ICT) properties, occurring from the electron donating triphenylamine to the electron accepting anthracene moiety in solutions. In addition, the photo-physical properties are strongly cyano-dependent, where the cyano-substituted (E/Z)-(2-anthracen-9-yl)-3-(4'-(diphenylamino)biphenyl-4yl)acrylonitrile molecule showed stronger electron affinity due to the enhanced internal steric hindrance compared to the (E)-4'-(2-(anthracen-9-yl)vinyl)-N,N-diphenylbiphenyl-4-amine molecule, which resulted in a lower photoluminescence quantum yield (PLQY) value and a shorter lifetime in the molecule. Besides, the Molecular Docking approach was used to investigate possible cellular staining targets to confirm cellular imaging potential of the compounds. Moreover, cell viability analyses put forth that synthesized molecules do not exhibit significant cytotoxicity under 125 µg mL-1 concentration on the human dermal fibroblast cell line (HDFa). Moreover, both of the compounds showed great potential in cellular imaging of HDFa cells. Compared to Hoechst 33258, a common fluorescent dye used for nuclear staining, the compounds showed higher magnification of cellular structure imaging capacity by staining the whole cellular compartment. On the other hand, bacterial staining showed that ethidium bromide has higher resolution in monitoring Staphylococcus aureus (S. aureus) cell culture.


Asunto(s)
Colorantes Fluorescentes , Staphylococcus aureus , Humanos , Simulación del Acoplamiento Molecular , Colorantes Fluorescentes/farmacología , Colorantes Fluorescentes/química , Supervivencia Celular , Antracenos/química
3.
Cells ; 12(7)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37048065

RESUMEN

Monoamine oxidase B (MAO-B) is an enzyme that metabolizes several chemicals, including dopamine. MAO-B inhibitors are used in the treatment of Parkinson's Disease (PD), and the inhibition of this enzyme reduces dopamine turnover and oxidative stress. The absence of dopamine results in PD pathogenesis originating from decreased Acetylcholinesterase (AChE) activity and elevated oxidative stress. Here, we performed a molecular docking analysis for the potential use of costunolide and parthenolide terpenoids as potential MAO-B inhibitors in the treatment of PD. Neuroprotective properties of plant-originated costunolide and parthenolide terpenoids were investigated in a cellular PD model that was developed by using MPP+ toxicity. We investigated neuroprotection mechanisms through the analysis of oxidative stress parameters, acetylcholinesterase activity and apoptotic cell death ratios. Our results showed that 100 µg/mL and 50 µg/mL of costunolide, and 50 µg/mL of parthenolide applied to the cellular disease model ameliorated the cytotoxicity caused by MPP+ exposure. We found that acetylcholinesterase activity assays exhibited that terpenoids could ameliorate and restore the enzyme activity as in negative control levels. The oxidative stress parameter analyses revealed that terpenoid application could enhance antioxidant levels and decrease oxidative stress in the cultures. In conclusion, we reported that these two terpenoid molecules could be used in the development of efficient treatment strategies for PD patients.


Asunto(s)
Enfermedad de Parkinson , Sesquiterpenos , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Dopamina/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Acetilcolinesterasa , Simulación del Acoplamiento Molecular , Sesquiterpenos/farmacología , Monoaminooxidasa/metabolismo , Apoptosis
4.
Medicina (Kaunas) ; 60(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38256343

RESUMEN

Background and Objectives: Favipiravir (FPV) is an antiviral medication and has an inhibitory effect on Cytochrome P450 (CYP2C8) protein, which is mainly involved in drug metabolism in the liver, and the expression of this gene is known to be enhanced in neuronal cells. The metabolization of Paclitaxel (PTX), a chemotherapeutic drug used in cancer patients, was analyzed for the first time in the human SH-SY5Y neuroblastoma cell line for monitoring possible synergistic effects when administered with FPV. Materials and Methods: Further, in vitro cytotoxic and genotoxic evaluations of FPV and PTX were also performed using wide concentration ranges in a human fibroblast cell culture (HDFa). Nuclear abnormalities were examined under a fluorescent microscope using the Hoechst 33258 fluorescent staining technique. In addition, the synergistic effects of these two drugs on cultured SH-SY5Y cells were determined by MTT cell viability assay. In addition, the death mechanisms that can occur in SHSY-5Y were revealed by using the flow cytometry technique. Results: Cell viability analyses on the HDFa healthy cell culture showed that both FPV and PTX have inhibitory effects at higher concentrations. On the other hand, there were no significant differences in nuclear abnormality numbers when both of the compounds were applied together. Cell viability analyses showed that FPV and PTX applications have higher cytotoxicity, which indicated synergistic toxicity against the SHSY-5Y cell line. Also, PTX exhibited higher anticancer properties against the neuroblastoma cell line when applied with FPV, as shown in both cytotoxicity and flow cytometry analyses. Conclusions: In light of our findings, the anticancer properties of PTX can be enhanced when the drug application is coupled with FPV exposure. Moreover, these results put forth that the anticancer drug dosage should be evaluated carefully in cancer patients who take COVID-19 treatment with FPV.


Asunto(s)
Amidas , Neuroblastoma , Paclitaxel , Pirazinas , Humanos , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Sinergismo Farmacológico , Tratamiento Farmacológico de COVID-19 , Neuroblastoma/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA