RESUMEN
The rare A673T variant was the first variant found within the amyloid precursor protein (APP) gene conferring protection against Alzheimer's disease (AD). Thereafter, different studies have discovered that the carriers of the APP A673T variant show reduced levels of amyloid beta (Aß) in the plasma and better cognitive performance at high age. Here, we analyzed cerebrospinal fluid (CSF) and plasma of APP A673T carriers and control individuals using a mass spectrometry-based proteomics approach to identify differentially regulated targets in an unbiased manner. Furthermore, the APP A673T variant was introduced into 2D and 3D neuronal cell culture models together with the pathogenic APP Swedish and London mutations. Consequently, we now report for the first time the protective effects of the APP A673T variant against AD-related alterations in the CSF, plasma, and brain biopsy samples from the frontal cortex. The CSF levels of soluble APPß (sAPPß) and Aß42 were significantly decreased on average 9-26% among three APP A673T carriers as compared to three well-matched controls not carrying the protective variant. Consistent with these CSF findings, immunohistochemical assessment of cortical biopsy samples from the same APP A673T carriers did not reveal Aß, phospho-tau, or p62 pathologies. We identified differentially regulated targets involved in protein phosphorylation, inflammation, and mitochondrial function in the CSF and plasma samples of APP A673T carriers. Some of the identified targets showed inverse levels in AD brain tissue with respect to increased AD-associated neurofibrillary pathology. In 2D and 3D neuronal cell culture models expressing APP with the Swedish and London mutations, the introduction of the APP A673T variant resulted in lower sAPPß levels. Concomitantly, the levels of sAPPα were increased, while decreased levels of CTFß and Aß42 were detected in some of these models. Our findings emphasize the important role of APP-derived peptides in the pathogenesis of AD and demonstrate the effectiveness of the protective APP A673T variant to shift APP processing towards the non-amyloidogenic pathway in vitro even in the presence of two pathogenic mutations.
Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Heterocigoto , Encéfalo/metabolismoRESUMEN
The granin neuropeptide family is composed of acidic secretory signaling molecules that act throughout the nervous system to help modulate synaptic signaling and neural activity. Granin neuropeptides have been shown to be dysregulated in different forms of dementia, including Alzheimer's disease (AD). Recent studies have suggested that the granin neuropeptides and their protease-cleaved bioactive peptides (proteoforms) may act as both powerful drivers of gene expression and as a biomarker of synaptic health in AD. The complexity of granin proteoforms in human cerebrospinal fluid (CSF) and brain tissue has not been directly addressed. We developed a reliable nontryptic mass spectrometry assay to comprehensively map and quantify endogenous neuropeptide proteoforms in the brain and CSF of individuals diagnosed with mild cognitive impairment and dementia due to AD compared to healthy controls, individuals with preserved cognition despite AD pathology ("Resilient"), and those with impaired cognition but no AD or other discernible pathology ("Frail"). We drew associations between neuropeptide proteoforms, cognitive status, and AD pathology values. Decreased levels of VGF proteoforms were observed in CSF and brain tissue from individuals with AD compared to controls, while select proteoforms from chromogranin A showed the opposite effect. To address mechanisms of neuropeptide proteoform regulation, we showed that the proteases Calpain-1 and Cathepsin S can cleave chromogranin A, secretogranin-1, and VGF into proteoforms found in both the brain and CSF. We were unable to demonstrate differences in protease abundance in protein extracts from matched brains, suggesting that regulation may occur at the level of transcription.
Asunto(s)
Enfermedad de Alzheimer , Neuropéptidos , Humanos , Enfermedad de Alzheimer/patología , Cromograninas/metabolismo , Cromogranina A/metabolismo , Fragmentos de Péptidos/metabolismo , Neuropéptidos/metabolismo , Encéfalo/metabolismo , Biomarcadores , Péptido Hidrolasas/metabolismo , Péptidos beta-Amiloides/metabolismoRESUMEN
Tryptophan (Trp)-catabolic enzymes (TCEs) produce metabolites that activate the aryl hydrocarbon receptor (AHR) and promote tumor progression and immunosuppression in glioblastoma. As therapies targeting TCEs or AHR become available, a better understanding of Trp metabolism is required. Methods: The combination of LC-MS/MS with chemical isobaric labeling enabled the simultaneous quantitative comparison of Trp and its amino group-bearing metabolites in multiple samples. We applied this method to the sera of a cohort of 43 recurrent glioblastoma patients and 43 age- and sex-matched healthy controls. Tumor volumes were measured in MRI data using an artificial neural network-based approach. MALDI MSI visualized Trp and its direct metabolite N-formylkynurenine (FK) in glioblastoma tissue. Analysis of scRNA-seq data was used to detect the presence of Trp metabolism and AHR activity in different cell types in glioblastoma. Results: Compared to healthy controls, glioblastoma patients showed decreased serum Trp levels. Surprisingly, the levels of Trp metabolites were also reduced. The decrease became smaller with more enzymatic steps between Trp and its metabolites, suggesting that Trp availability controls the levels of its systemic metabolites. High tumor volume associated with low systemic metabolite levels and low systemic kynurenine levels associated with worse overall survival. MALDI MSI demonstrated heterogeneity of Trp catabolism across glioblastoma tissues. Analysis of scRNA-seq data revealed that genes involved in Trp metabolism were expressed in almost all the cell types in glioblastoma and that most cell types, in particular macrophages and T cells, exhibited AHR activation. Moreover, high AHR activity associated with reduced overall survival in the glioblastoma TCGA dataset. Conclusion: The novel techniques we developed could support the identification of patients that may benefit from therapies targeting TCEs or AHR activation.
Asunto(s)
Glioblastoma/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Línea Celular Tumoral , Cromatografía Liquida/métodos , Estudios de Cohortes , Bases de Datos Genéticas , Femenino , Glioblastoma/sangre , Glioblastoma/genética , Humanos , Inmunoterapia , Masculino , Persona de Mediana Edad , Receptores de Hidrocarburo de Aril/genética , Espectrometría de Masas en Tándem/métodos , Triptófano/sangreRESUMEN
The design and synthesis of a proline-based reporter isobaric Tandem Mass Tag structure (TMTpro) is presented. An analysis is made of the performance of the new TMTpro tags in comparison with the current commercially available dimethylpiperidine-reporter-based TMT10/11 reagents. The new reporter structure provides a set of 16 tags for use with resolution of 6.3 mDa mass differences in high resolution mass spectrometers and a set of 9 reagents with 1 Da spacing between reporter ions for single dalton analysis using 9 heavy nuclei per tag. We show similar performance in terms of peptide identification rates and quantification between the TMTpro 16-plex and TMT10/11-plex reagents. We also demonstrate the suitability of the TMTpro reagents for phosphopeptide analysis. The ability to pool 16 samples reduces the overall amount of sample required for each channel, and we anticipate that TMTpro reagents will be a useful enhancement for any protocol that benefits from sample pooling and should reduce missing data.
RESUMEN
We present a novel tandem mass tag solid-phase amino labeling (TMT-SPAL) protocol using reversible immobilization of peptides onto octadecyl-derivatized (C18) solid supports. This method can reduce the number of steps required in complex protocols, saving time and potentially reducing sample loss. In our global phosphopeptide profiling workflow (SysQuant), we can cut 24 h from the protocol while increasing peptide identifications (20%) and reducing side reactions. Solid-phase labeling with TMTs does require some modification to typical labeling conditions, particularly pH. It has been found that complete labeling equivalent to standard basic pH solution-phase labeling for small and large samples can be achieved on C18 resins under slightly acidic buffer conditions. Improved labeling behavior on C18 compared to that with standard basic pH solution-phase labeling is demonstrated. We analyzed our samples for histidine, serine, threonine, and tyrosine labeling to determine the degree of overlabeling and observed higher than expected levels (25% of all peptide spectral matches (PSMs)) of overlabeling at all of these amino acids (predominantly at tyrosine and serine) in our standard solution-phase labeling protocol. Overlabeling at all of these sites is greatly reduced (4-fold, to 7% of all PSMs) by the low-pH conditions used in the TMT-SPAL protocol. Overlabeling seems to represent a so-far overlooked mechanism causing reductions in peptide identification rates with NHS-activated TMT labeling compared to that with label-free methods. Our results also highlight the importance of searching data for overlabeling when labeling methods are used.
Asunto(s)
Concentración de Iones de Hidrógeno , Fosfopéptidos/química , Aminas/química , Línea Celular Tumoral , Humanos , Espectrometría de Masas en TándemRESUMEN
OBJECTIVE: LC-MS/MS phospho-proteomics is an essential technology to help unravel the complex molecular events that lead to and propagate cancer. We have developed a global phospho-proteomic workflow to determine activity of signaling pathways and drug targets in pancreatic cancer tissue for clinical application. METHODS: Peptides resulting from tryptic digestion of proteins extracted from frozen tissue of pancreatic ductal adenocarcinoma and background pancreas (nâ=â12), were labelled with tandem mass tags (TMT 8-plex), separated by strong cation exchange chromatography, then were analysed by LC-MS/MS directly or first enriched for phosphopeptides using IMAC and TiO2, prior to analysis. In-house, commercial and freeware bioinformatic platforms were used to identify relevant biological events from the complex dataset. RESULTS: Of 2,101 proteins identified, 152 demonstrated significant difference in abundance between tumor and non-tumor tissue. They included proteins that are known to be up-regulated in pancreatic cancer (e.g. Mucin-1), but the majority were new candidate markers such as HIPK1 & MLCK. Of the 6,543 unique phosphopeptides identified (6,284 unique phosphorylation sites), 635 showed significant regulation, particularly those from proteins involved in cell migration (Rho guanine nucleotide exchange factors & MRCKα) and formation of focal adhesions. Activator phosphorylation sites on FYN, AKT1, ERK2, HDAC1 and other drug targets were found to be highly modulated (≥2 fold) in different cases highlighting their predictive power. CONCLUSION: Here we provided critical information enabling us to identify the common and unique molecular events likely contributing to cancer in each case. Such information may be used to help predict more bespoke therapy suitable for an individual case.
Asunto(s)
Antineoplásicos/uso terapéutico , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Proteoma/metabolismo , Secuencia de Aminoácidos , Biomarcadores/metabolismo , Daño del ADN , Reparación del ADN , Análisis Discriminante , Matriz Extracelular/metabolismo , Adhesiones Focales/metabolismo , Ontología de Genes , Humanos , Análisis de los Mínimos Cuadrados , Fosfopéptidos/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Seudópodos/metabolismo , Transducción de Señal , Regulación hacia ArribaRESUMEN
In this study, we present a pharmacoproteomic investigation of response to antidepressants two inbred strains. Our aim was to uncover molecular mechanisms underlying antidepressant action and identify new biomarkers to determine therapeutic response to two antidepressants with proven efficacy in the treatment of depression but divergent mechanisms of action. Mice were treated with the pro-noradrenergic drug nortriptyline, the pro-serotonergic drug escitalopram or saline. Quantitative proteomic analyses were undertaken on hippocampal tissue from a study design that used two inbred mouse strains, two depressogenic protocols and a control condition, (maternal separation, chronic mild stress, control), two antidepressant drugs and two dosing protocols. The proteomic analysis was aimed at the identification of specific drug-response markers. Complementary approaches, 2DE and isobaric tandem mass tagging (TMT), were applied to the selected experimental groups. To investigate the relationship between proteomic profiles, depressogenic protocols and drug response, 2DE and TMT data sets were analysed using multivariate methods. The results highlighted significant strain- and stress-related differences across both 2DE and TMT data sets and identified the three gene products involved in serotonergic (PXBD5, YHWAB, SLC25A4) and one in noradrenergic antidepressant action (PXBD6).
Asunto(s)
Antidepresivos/farmacología , Hipocampo/efectos de los fármacos , Proteoma/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Translocador 1 del Nucleótido Adenina/genética , Translocador 1 del Nucleótido Adenina/metabolismo , Animales , Citalopram/farmacología , Electroforesis en Gel Bidimensional , Femenino , Hipocampo/química , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Análisis Multivariante , Nortriptilina/farmacología , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Análisis de Componente Principal , Proteoma/análisis , Proteómica , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , DesteteRESUMEN
BACKGROUND: Proteomic analysis has become an effective tool in breast cancer research. In this study, we applied the new gel-free tandem mass tag (TMT) reference method for the first time in breast cancer. MATERIALS AND METHODS: Proteomic analysis was used to compare 10 estrogen receptor (ER)-positive and 10 ER-negative samples. The results of the proteomic approach were validated by Western blot, immunohistochemistry and gene expression analysis. RESULTS: 17 proteins with significant differences in expression were identified. 13 proteins were overexpressed in ER-negative tumors and 4 were overexpressed in ER-positive samples. All these proteins were characterized by relatively high cellular abundance. CONCLUSIONS: Our results demonstrate that the gel-free TMT approach allows the quantification of differences in protein expression levels. Further improvement of the sensitivity by subfractionation of the tissue should allow also the identification of low-abundance proteins and might lead to the use of this method in breast cancer research.