Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(7): 10874-10886, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38570950

RESUMEN

Quantum information processing with photons in small-footprint and highly integrated silicon-based photonic chips requires incorporating non-classical light sources. In this respect, self-assembled III-V semiconductor quantum dots (QDs) are an attractive solution, however, they must be combined with the silicon platform. Here, by utilizing the large-area direct bonding technique, we demonstrate the hybridization of InP and SOI chips, which allows for coupling single photons to the SOI chip interior, offering cost-effective scalability in setting up a multi-source environment for quantum photonic chips. We fabricate devices consisting of self-assembled InAs QDs embedded in the tapered InP waveguide (WG) positioned over the SOI-defined Si WG. Focusing on devices generating light in the telecom C-band compatible with the low-loss optical fiber networks, we demonstrate the light coupling between InP and SOI platforms by observing photons outcoupled at the InP-made circular Bragg grating outcoupler fabricated at the end of an 80 µm-long Si WG, and at the cleaved edge of the Si WG. Finally, for a device with suppressed multi-photon generation events exhibiting 80% single photon generation purity, we measure the photon number outcoupled at the cleaved facet of the Si WG. We estimate the directional on-chip photon coupling between the source and the Si WG to 5.1%.

2.
Nat Commun ; 15(1): 3358, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637520

RESUMEN

Single indistinguishable photons at telecom C-band wavelengths are essential for quantum networks and the future quantum internet. However, high-throughput technology for single-photon generation at 1550 nm remained a missing building block to overcome present limitations in quantum communication and information technologies. Here, we demonstrate the high-throughput fabrication of quantum-photonic integrated devices operating at C-band wavelengths based on epitaxial semiconductor quantum dots. Our technique enables the deterministic integration of single pre-selected quantum emitters into microcavities based on circular Bragg gratings. Respective devices feature the triggered generation of single photons with ultra-high purity and record-high photon indistinguishability. Further improvements in yield and coherence properties will pave the way for implementing single-photon non-linear devices and advanced quantum networks at telecom wavelengths.

3.
PLoS Comput Biol ; 20(4): e1011575, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683878

RESUMEN

Compartmental models that describe infectious disease transmission across subpopulations are central for assessing the impact of non-pharmaceutical interventions, behavioral changes and seasonal effects on the spread of respiratory infections. We present a Bayesian workflow for such models, including four features: (1) an adjustment for incomplete case ascertainment, (2) an adequate sampling distribution of laboratory-confirmed cases, (3) a flexible, time-varying transmission rate, and (4) a stratification by age group. Within the workflow, we benchmarked the performance of various implementations of two of these features (2 and 3). For the second feature, we used SARS-CoV-2 data from the canton of Geneva (Switzerland) and found that a quasi-Poisson distribution is the most suitable sampling distribution for describing the overdispersion in the observed laboratory-confirmed cases. For the third feature, we implemented three methods: Brownian motion, B-splines, and approximate Gaussian processes (aGP). We compared their performance in terms of the number of effective samples per second, and the error and sharpness in estimating the time-varying transmission rate over a selection of ordinary differential equation solvers and tuning parameters, using simulated seroprevalence and laboratory-confirmed case data. Even though all methods could recover the time-varying dynamics in the transmission rate accurately, we found that B-splines perform up to four and ten times faster than Brownian motion and aGPs, respectively. We validated the B-spline model with simulated age-stratified data. We applied this model to 2020 laboratory-confirmed SARS-CoV-2 cases and two seroprevalence studies from the canton of Geneva. This resulted in detailed estimates of the transmission rate over time and the case ascertainment. Our results illustrate the potential of the presented workflow including stratified transmission to estimate age-specific epidemiological parameters. The workflow is freely available in the R package HETTMO, and can be easily adapted and applied to other infectious diseases.


Asunto(s)
Teorema de Bayes , COVID-19 , SARS-CoV-2 , Flujo de Trabajo , Humanos , COVID-19/transmisión , COVID-19/epidemiología , Biología Computacional , Simulación por Computador , Adulto , Suiza/epidemiología
4.
Opt Express ; 32(4): 5242-5251, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439256

RESUMEN

Microscopic single-mode lasers with low power consumption, large modulation bandwidth, and ultra-narrow linewidth are essential for numerous applications, such as on-chip photonic networks. A recently demonstrated microlaser using an optical Fano resonance between a discrete mode and a continuum of modes to form one of the mirrors, i.e., the so-called Fano laser, holds great promise for meeting these requirements. Here, we suggest and experimentally demonstrate what we believe is a new configuration of the Fano laser based on a nanobeam geometry. Compared to the conventional two-dimensional photonic crystal geometry, the nanobeam structure makes it easier to engineer the phase-matching condition that facilitates the realization of a bound-state-in-the-continuum (BIC). We investigate the laser threshold in two scenarios based on the new nanobeam geometry. In the first, classical case, the gain is spatially located in the part of the cavity that supports a continuum of modes. In the second case, instead, the gain is located in the region that supports a discrete mode. We find that the laser threshold for the second case can be significantly reduced compared to the conventional Fano laser. These results pave the way for the practical realization of high-performance microlasers.

5.
ACS Photonics ; 11(2): 339-347, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38405394

RESUMEN

Semiconductor quantum dots (QDs) enable the generation of single and entangled photons, which are useful for various applications in photonic quantum technologies. Specifically for quantum communication via fiber-optical networks, operation in the telecom C-band centered around 1550 nm is ideal. The direct generation of QD-photons in this spectral range with high quantum-optical quality, however, remained challenging. Here, we demonstrate the coherent on-demand generation of indistinguishable photons in the telecom C-band from single QD devices consisting of InAs/InP QD-mesa structures heterogeneously integrated with a metallic reflector on a silicon wafer. Using pulsed two-photon resonant excitation of the biexciton-exciton radiative cascade, we observe Rabi rotations up to pulse areas of 4π and a high single-photon purity in terms of g(2)(0) = 0.005(1) and 0.015(1) for exciton and biexciton photons, respectively. Applying two independent experimental methods, based on fitting Rabi rotations in the emission intensity and performing photon cross-correlation measurements, we consistently obtain preparation fidelities at the π-pulse exceeding 80%. Finally, performing Hong-Ou-Mandel-type two-photon interference experiments, we obtain a photon-indistinguishability of the full photon wave packet of up to 35(3)%, representing a significant advancement in the photon-indistinguishability of single photons emitted directly in the telecom C-band.

6.
Opt Lett ; 49(4): 802-805, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38359186

RESUMEN

Microelectromechanical system (MEMS) vertical cavity surface-emitting lasers (VCSELs) are the fastest coherently tunable lasers (nm/ns) due to their unique Doppler-assisted tuning mechanism. However, in standard electrostatic actuation, the response is highly nonlinear and large (>100 V) dynamic voltages are needed for MHz sweep rates. We present a bidirectional MEMS VCSEL as a solution to these challenges where static voltages can be used to enable substantially linear and amplified wavelength tuning with respect to the fast tuning (MEMS) voltage. Using an InP/SOI MEMS bonded structure, we show a tuning range of 54.5 nm (gain limited) centered around 1586 nm at an actuation frequency of 2.73 MHz.

7.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139177

RESUMEN

The alternative sigma factor RpoS is considered to be one of the major regulators providing stress resistance and cross-protection in bacteria. In phytopathogenic bacteria, the effects of RpoS have not been analyzed with regard to cross-protection, and genes whose expression is directly or indirectly controlled by RpoS have not been determined at the whole-transcriptome level. Our study aimed to determine RpoS-regulated genes and phenotypes in the phytopathogenic bacterium Pectobacterium atrosepticum. Knockout of the rpoS gene in P. atrosepticum affected the long-term starvation response, cross-protection, and virulence toward plants with enhanced immune status. The whole-transcriptome profiles of the wild-type P. atrosepticum strain and its ΔrpoS mutant were compared under different experimental conditions, and functional gene groups whose expression was affected by RpoS were determined. The RpoS promoter motif was inferred within the promoter regions of the genes affected by rpoS deletion, and the P. atrosepticum RpoS regulon was predicted. Based on RpoS-controlled phenotypes, transcriptome profiles, and RpoS regulon composition, the regulatory role of RpoS in P. atrosepticum is discussed.


Asunto(s)
Proteínas Bacterianas , Pectobacterium , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transcriptoma , Pectobacterium/metabolismo , Fenotipo , Factor sigma/genética , Factor sigma/metabolismo , Regulación Bacteriana de la Expresión Génica
8.
Opt Express ; 31(2): 1541-1556, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785187

RESUMEN

We demonstrate comprehensive numerical studies on a hybrid III-V/Si-based waveguide system, serving as a platform for efficient light coupling between an integrated III-V quantum dot emitter to an on-chip quantum photonic integrated circuit defined on a silicon substrate. We propose a platform consisting of a hybrid InP/Si waveguide and an InP-embedded InAs quantum dot, emitting at the telecom C-band near 1550 nm. The platform can be fabricated using existing semiconductor processing technologies. Our numerical studies reveal nearly 87% of the optical field transfer efficiency between geometrically-optimized InP/Si and Si waveguides, considering propagating field along a tapered geometry. The coupling efficiency of a directional dipole emission to the hybrid InP/Si waveguide is evaluated to ∼38%, which results in more than 33% of the total on-chip optical field transfer efficiency from the dipole to the Si waveguide. We also consider the off-chip outcoupling efficiency of the propagating photon field along the Si waveguide by examining the normal to the chip plane and in-plane outcoupling configurations. In the former case, the outcoupling amounts to ∼26% when using the circular Bragg grating outcoupler design. In the latter case, the efficiency reaches up to 8%. Finally, we conclude that the conceptual device's performance is weakly susceptible to the transferred photon wavelength, offering a broadband operation within the 1.5-1.6 µm spectral range.

9.
JAMA Netw Open ; 6(1): e2253590, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36716029

RESUMEN

Importance: COVID-19 was the underlying cause of death for more than 940 000 individuals in the US, including at least 1289 children and young people (CYP) aged 0 to 19 years, with at least 821 CYP deaths occurring in the 1-year period from August 1, 2021, to July 31, 2022. Because deaths among US CYP are rare, the mortality burden of COVID-19 in CYP is best understood in the context of all other causes of CYP death. Objective: To determine whether COVID-19 is a leading (top 10) cause of death in CYP in the US. Design, Setting, and Participants: This national population-level cross-sectional epidemiological analysis for the years 2019 to 2022 used data from the US Centers for Disease Control and Prevention Wide-Ranging Online Data for Epidemiologic Research (WONDER) database on underlying cause of death in the US to identify the ranking of COVID-19 relative to other causes of death among individuals aged 0 to 19 years. COVID-19 deaths were considered in 12-month periods between April 1, 2020, and August 31, 2022, compared with deaths from leading non-COVID-19 causes in 2019, 2020, and 2021. Main Outcomes and Measures: Cause of death rankings by total number of deaths, crude rates per 100 000 population, and percentage of all causes of death, using the National Center for Health Statistics 113 Selected Causes of Death, for ages 0 to 19 and by age groupings (<1 year, 1-4 years, 5-9 years, 10-14 years, 15-19 years). Results: There were 821 COVID-19 deaths among individuals aged 0 to 19 years during the study period, resulting in a crude death rate of 1.0 per 100 000 population overall; 4.3 per 100 000 for those younger than 1 year; 0.6 per 100 000 for those aged 1 to 4 years; 0.4 per 100 000 for those aged 5 to 9 years; 0.5 per 100 000 for those aged 10 to 14 years; and 1.8 per 100 000 for those aged 15 to 19 years. COVID-19 mortality in the time period of August 1, 2021, to July 31, 2022, was among the 10 leading causes of death in CYP aged 0 to 19 years in the US, ranking eighth among all causes of deaths, fifth in disease-related causes of deaths (excluding unintentional injuries, assault, and suicide), and first in deaths caused by infectious or respiratory diseases when compared with 2019. COVID-19 deaths constituted 2% of all causes of death in this age group. Conclusions and Relevance: The findings of this study suggest that COVID-19 was a leading cause of death in CYP. It caused substantially more deaths in CYP annually than any vaccine-preventable disease historically in the recent period before vaccines became available. Various factors, including underreporting and not accounting for COVID-19's role as a contributing cause of death from other diseases, mean that these estimates may understate the true mortality burden of COVID-19. The findings of this study underscore the public health relevance of COVID-19 to CYP. In the likely future context of sustained SARS-CoV-2 circulation, appropriate pharmaceutical and nonpharmaceutical interventions (eg, vaccines, ventilation, air cleaning) will continue to play an important role in limiting transmission of the virus and mitigating severe disease in CYP.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Niño , Humanos , Adolescente , Causas de Muerte , Estudios Transversales , SARS-CoV-2
10.
Nat Commun ; 13(1): 7003, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385137

RESUMEN

Genomic sequencing is essential to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments, vaccines, and guide public health responses. To investigate the global SARS-CoV-2 genomic surveillance, we used sequences shared via GISAID to estimate the impact of sequencing intensity and turnaround times on variant detection in 189 countries. In the first two years of the pandemic, 78% of high-income countries sequenced >0.5% of their COVID-19 cases, while 42% of low- and middle-income countries reached that mark. Around 25% of the genomes from high income countries were submitted within 21 days, a pattern observed in 5% of the genomes from low- and middle-income countries. We found that sequencing around 0.5% of the cases, with a turnaround time <21 days, could provide a benchmark for SARS-CoV-2 genomic surveillance. Socioeconomic inequalities undermine the global pandemic preparedness, and efforts must be made to support low- and middle-income countries improve their local sequencing capacity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Genoma Viral/genética , COVID-19/epidemiología , Pandemias , Genómica
11.
Nanotechnology ; 33(47)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35944428

RESUMEN

Off-axis electron holography was used to reveal remote doping in GaAs nanowires occurring duringin situannealing in a transmission electron microscope. Dynamic changes to the electrostatic potential caused by carbon dopant diffusion upon annealing were measured across GaAs nanowires with radial p-p+ core-shell junctions. Electrostatic potential profiles were extracted from holographic phase maps and built-in potentials (Vbi) and depletion layer widths (DLWs) were estimated as function of temperature over 300-873 K. Simulations in absence of remote doping predict a significant increase ofVbiand DLWs with temperature. In contrast, we measured experimentally a nearly constantVbiand a weak increase of DLWs. Moreover, we observed the appearance of a depression in the potential profile of the core upon annealing. We attribute these deviations from the predicted behavior to carbon diffusion from the shell to the core through the nanowire sidewalls, i.e. to remote doping, becoming significant at 673 K. The DLW in the p and p+ regions are in the 10-30 nm range.

13.
ACS Photonics ; 9(7): 2273-2279, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35880068

RESUMEN

Whereas the Si photonic platform is highly attractive for scalable optical quantum information processing, it lacks practical solutions for efficient photon generation. Self-assembled semiconductor quantum dots (QDs) efficiently emit photons in the telecom bands (1460-1625 nm) and allow for heterogeneous integration with Si. In this work, we report on a novel, robust, and industry-compatible approach for achieving single-photon emission from InAs/InP QDs heterogeneously integrated with a Si substrate. As a proof of concept, we demonstrate a simple vertical emitting device, employing a metallic mirror beneath the QD emitter, and experimentally obtained photon extraction efficiencies of ∼10%. Nevertheless, the figures of merit of our structures are comparable with values previously only achieved for QDs emitting at shorter wavelength or by applying technically demanding fabrication processes. Our architecture and the simple fabrication procedure allows for the demonstration of high-purity single-photon generation with a second-order correlation function at zero time delay, g (2)(τ = 0) < 0.02, without any corrections at continuous wave excitation at the liquid helium temperature and preserved up to 50 K. For pulsed excitation, we achieve the as-measured g (2)(0) down to 0.205 ± 0.020 (0.114 ± 0.020 with background coincidences subtracted).

14.
Nanoscale ; 14(24): 8858-8864, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35697049

RESUMEN

We present a wearable device with III-V nanowires in a flexible polymer, which is used for active mechanical tuning of the second-harmonic generation intensity. An array of vertical GaAs nanowires was grown with metalorganic vapour-phase epitaxy, then embedded in polydimethylsiloxane and detached from the rigid substrate with mechanical peel off. Experimental results show a tunability of the second-harmonic generation intensity by a factor of two for 30% stretching which matches the simulations including the distribution of sizes. We studied the impact of different parameters on the band dispersion and tunability of the second-harmonic generation, such as the pitch, the length, and the diameter. We predict at least three orders of magnitude active mechanical tuning of the nonlinear signal intensity for nanowire arrays. The flexibility of the array together with the resonant wavelength engineering make such structures perspective platforms for future bendable or stretchable nanophotonic devices as light sources or sensors.

15.
J R Soc Interface ; 19(191): 20220094, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35673858

RESUMEN

Gaussian processes (GPs), implemented through multivariate Gaussian distributions for a finite collection of data, are the most popular approach in small-area spatial statistical modelling. In this context, they are used to encode correlation structures over space and can generalize well in interpolation tasks. Despite their flexibility, off-the-shelf GPs present serious computational challenges which limit their scalability and practical usefulness in applied settings. Here, we propose a novel, deep generative modelling approach to tackle this challenge, termed PriorVAE: for a particular spatial setting, we approximate a class of GP priors through prior sampling and subsequent fitting of a variational autoencoder (VAE). Given a trained VAE, the resultant decoder allows spatial inference to become incredibly efficient due to the low dimensional, independently distributed latent Gaussian space representation of the VAE. Once trained, inference using the VAE decoder replaces the GP within a Bayesian sampling framework. This approach provides tractable and easy-to-implement means of approximately encoding spatial priors and facilitates efficient statistical inference. We demonstrate the utility of our VAE two-stage approach on Bayesian, small-area estimation tasks.


Asunto(s)
Análisis de Área Pequeña , Análisis Espacial , Teorema de Bayes , Humanos
16.
Nat Med ; 28(7): 1476-1485, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35538260

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Gamma variant of concern has spread rapidly across Brazil since late 2020, causing substantial infection and death waves. Here we used individual-level patient records after hospitalization with suspected or confirmed coronavirus disease 2019 (COVID-19) between 20 January 2020 and 26 July 2021 to document temporary, sweeping shocks in hospital fatality rates that followed the spread of Gamma across 14 state capitals, during which typically more than half of hospitalized patients aged 70 years and older died. We show that such extensive shocks in COVID-19 in-hospital fatality rates also existed before the detection of Gamma. Using a Bayesian fatality rate model, we found that the geographic and temporal fluctuations in Brazil's COVID-19 in-hospital fatality rates were primarily associated with geographic inequities and shortages in healthcare capacity. We estimate that approximately half of the COVID-19 deaths in hospitals in the 14 cities could have been avoided without pre-pandemic geographic inequities and without pandemic healthcare pressure. Our results suggest that investments in healthcare resources, healthcare optimization and pandemic preparedness are critical to minimize population-wide mortality and morbidity caused by highly transmissible and deadly pathogens such as SARS-CoV-2, especially in low- and middle-income countries.


Asunto(s)
COVID-19 , Anciano , Anciano de 80 o más Años , Teorema de Bayes , Brasil/epidemiología , COVID-19/epidemiología , Hospitales , Humanos , SARS-CoV-2
17.
Arch Toxicol ; 96(3): 817-830, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35034154

RESUMEN

There exists consensus that the traditional means by which safety of chemicals is assessed-namely through reliance upon apical outcomes obtained following in vivo testing-is increasingly unfit for purpose. Whilst efforts in development of suitable alternatives continue, few have achieved levels of robustness required for regulatory acceptance. An array of "new approach methodologies" (NAM) for determining toxic effect, spanning in vitro and in silico spheres, have by now emerged. It has been suggested, intuitively, that combining data obtained from across these sources might serve to enhance overall confidence in derived judgment. This concept may be formalised in the "tiered assessment" approach, whereby evidence gathered through a sequential NAM testing strategy is exploited so to infer the properties of a compound of interest. Our intention has been to provide an illustration of how such a scheme might be developed and applied within a practical setting-adopting for this purpose the endpoint of rat acute oral lethality. Bayesian statistical inference is drawn upon to enable quantification of degree of confidence that a substance might ultimately belong to one of five LD50-associated toxicity categories. Informing this is evidence acquired both from existing in silico and in vitro resources, alongside a purposely-constructed random forest model and structural alert set. Results indicate that the combination of in silico methodologies provides moderately conservative estimations of hazard, conducive for application in safety assessment, and for which levels of certainty are defined. Accordingly, scope for potential extension of approach to further toxicological endpoints is demonstrated.


Asunto(s)
Medición de Riesgo/métodos , Pruebas de Toxicidad Aguda/métodos , Toxicología/métodos , Animales , Teorema de Bayes , Seguridad Química/métodos , Simulación por Computador , Dosificación Letal Mediana , Ratas
19.
medRxiv ; 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34751273

RESUMEN

The SARS-CoV-2 Gamma variant spread rapidly across Brazil, causing substantial infection and death waves. We use individual-level patient records following hospitalisation with suspected or confirmed COVID-19 to document the extensive shocks in hospital fatality rates that followed Gamma's spread across 14 state capitals, and in which more than half of hospitalised patients died over sustained time periods. We show that extensive fluctuations in COVID-19 in-hospital fatality rates also existed prior to Gamma's detection, and were largely transient after Gamma's detection, subsiding with hospital demand. Using a Bayesian fatality rate model, we find that the geographic and temporal fluctuations in Brazil's COVID-19 in-hospital fatality rates are primarily associated with geographic inequities and shortages in healthcare capacity. We project that approximately half of Brazil's COVID-19 deaths in hospitals could have been avoided without pre-pandemic geographic inequities and without pandemic healthcare pressure. Our results suggest that investments in healthcare resources, healthcare optimization, and pandemic preparedness are critical to minimize population wide mortality and morbidity caused by highly transmissible and deadly pathogens such as SARS-CoV-2, especially in low- and middle-income countries. NOTE: The following manuscript has appeared as 'Report 46 - Factors driving extensive spatial and temporal fluctuations in COVID-19 fatality rates in Brazilian hospitals' at https://spiral.imperial.ac.uk:8443/handle/10044/1/91875 . ONE SENTENCE SUMMARY: COVID-19 in-hospital fatality rates fluctuate dramatically in Brazil, and these fluctuations are primarily associated with geographic inequities and shortages in healthcare capacity.

20.
Stat Med ; 40(27): 6209-6234, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34494686

RESUMEN

This tutorial shows how to build, fit, and criticize disease transmission models in Stan, and should be useful to researchers interested in modeling the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and other infectious diseases in a Bayesian framework. Bayesian modeling provides a principled way to quantify uncertainty and incorporate both data and prior knowledge into the model estimates. Stan is an expressive probabilistic programming language that abstracts the inference and allows users to focus on the modeling. As a result, Stan code is readable and easily extensible, which makes the modeler's work more transparent. Furthermore, Stan's main inference engine, Hamiltonian Monte Carlo sampling, is amiable to diagnostics, which means the user can verify whether the obtained inference is reliable. In this tutorial, we demonstrate how to formulate, fit, and diagnose a compartmental transmission model in Stan, first with a simple susceptible-infected-recovered model, then with a more elaborate transmission model used during the SARS-CoV-2 pandemic. We also cover advanced topics which can further help practitioners fit sophisticated models; notably, how to use simulations to probe the model and priors, and computational techniques to scale-up models based on ordinary differential equations.


Asunto(s)
COVID-19 , SARS-CoV-2 , Teorema de Bayes , Humanos , Método de Montecarlo , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA