Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0303263, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38748719

RESUMEN

Environmental DNA (eDNA) is an increasingly useful method for detecting pelagic animals in the ocean but typically requires large water volumes to sample diverse assemblages. Ship-based pelagic sampling programs that could implement eDNA methods generally have restrictive water budgets. Studies that quantify how eDNA methods perform on low water volumes in the ocean are limited, especially in deep-sea habitats with low animal biomass and poorly described species assemblages. Using 12S rRNA and COI gene primers, we quantified assemblages comprised of micronekton, coastal forage fishes, and zooplankton from low volume eDNA seawater samples (n = 436, 380-1800 mL) collected at depths of 0-2200 m in the southern California Current. We compared diversity in eDNA samples to concurrently collected pelagic trawl samples (n = 27), detecting a higher diversity of vertebrate and invertebrate groups in the eDNA samples. Differences in assemblage composition could be explained by variability in size-selectivity among methods and DNA primer suitability across taxonomic groups. The number of reads and amplicon sequences variants (ASVs) did not vary substantially among shallow (<200 m) and deep samples (>600 m), but the proportion of invertebrate ASVs that could be assigned a species-level identification decreased with sampling depth. Using hierarchical clustering, we resolved horizontal and vertical variability in marine animal assemblages from samples characterized by a relatively low diversity of ecologically important species. Low volume eDNA samples will quantify greater taxonomic diversity as reference libraries, especially for deep-dwelling invertebrate species, continue to expand.


Asunto(s)
Organismos Acuáticos , Biodiversidad , ADN Ambiental , Animales , ADN Ambiental/genética , ADN Ambiental/análisis , Organismos Acuáticos/genética , Organismos Acuáticos/clasificación , Agua de Mar , Peces/genética , Peces/clasificación , Zooplancton/genética , Zooplancton/clasificación , Ecosistema , Invertebrados/genética , Invertebrados/clasificación
2.
Nat Commun ; 14(1): 7412, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052790

RESUMEN

Although massive biomass fluctuations of coastal-pelagic fishes are an iconic example of the impacts of climate variability on marine ecosystems, the mechanisms governing these dynamics are often elusive. We construct a 45-year record of nitrogen stable isotopes measured in larvae of Northern Anchovy (Engraulis mordax) in the California Current Ecosystem to assess patterns in food chain length. Larval trophic efficiency associated with a shortened food chain increased larval survival and produced boom periods of high adult biomass. In contrast, when larval food chain length increased, and energy transfer efficiency decreased, the population crashed. We propose the Trophic Efficiency in Early Life (TEEL) hypothesis, which states that larval fishes must consume prey that confer sufficient energy for survival, to help explain natural boom-bust dynamics of coastal pelagic fishes. Our findings illustrate a potential for trophic indicators to generally inform larval survival and adult population dynamics of coastal-pelagic fishes.


Asunto(s)
Ecosistema , Peces , Animales , Larva , Cadena Alimentaria , Dieta , Isótopos de Nitrógeno/análisis
3.
PeerJ ; 11: e16551, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38144197

RESUMEN

The fisheries history of the Giant Sea Bass, Stereolepis gigas (Telostei: Polyprionidae), is closely linked to its spatial ecology. Its overharvest is directly associated with formation of spatially distinct spawning aggregations during summer, while its subsequent recovery is hypothesized to be the result of spatially explicit gear restrictions. Understanding the spatial ecology of Giant Sea Bass is a key part of efforts to assess contemporary threats such as commercial harvest and incidental catch by recreational fisheries. In this study, we used acoustic telemetry to characterize Giant Sea Bass space use in the La Jolla kelp forest using an acoustic array that encompasses two marine protected areas (MPAs) and heavily trafficked recreational fishing grounds. Five of the seven fish we tagged remained in the La Jolla array for at least 6 months. Two fish were resident across multiple years, with one fish consistently detected for 4 years. Only one fish was detected in the broader network of regional acoustic receivers, moving north approximately 8 km to Del Mar. Most tagged fish had home ranges and core use areas indicating they spend considerable time outside MPAs, particularly in areas with high recreational fishing activity. During spawning season we detected fish less frequently in the La Jolla array and recorded higher movement rates. While the current MPA network in La Jolla by no means offers complete protection to this fish, it does appear to support long-term persistence of some individuals in a region of exceptionally high recreational fishing pressure.


Asunto(s)
Lubina , Kelp , Perciformes , Animales , Conservación de los Recursos Naturales , Bosques , Telemetría
4.
Proc Biol Sci ; 290(1998): 20230551, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37161330

RESUMEN

Dispersal of eggs and larvae from spawning sites is critical to the population dynamics and conservation of marine fishes. For overfished species like critically endangered Nassau grouper (Epinephelus striatus), recovery depends on the fate of eggs spawned at the few remaining aggregation sites. Biophysical models can predict larval dispersal, yet these rely on assumed values of key parameters, such as diffusion and mortality rates, which have historically been difficult or impossible to estimate. We used in situ imaging to record three-dimensional positions of individual eggs and larvae in proximity to oceanographic drifters released into egg plumes from the largest known Nassau grouper spawning aggregation. We then estimated a diffusion-mortality model and applied it to previous years' drifter tracks to evaluate the possibility of retention versus export to nearby sites within 5 days of spawning. Results indicate that larvae were retained locally in 2011 and 2017, with 2011 recruitment being a substantial driver of population recovery on Little Cayman. Export to a nearby island with a depleted population occurred in 2016. After two decades of protection, the population appears to be self-replenishing but also capable of seeding recruitment in the region, supporting calls to incorporate spawning aggregation protections into fisheries management.


Asunto(s)
Caimanes y Cocodrilos , Lubina , Animales , Larva , Biofisica , Explotaciones Pesqueras
5.
Proc Natl Acad Sci U S A ; 119(51): e2122354119, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36508667

RESUMEN

Islands support unique plants, animals, and human societies found nowhere else on the Earth. Local and global stressors threaten the persistence of island ecosystems, with invasive species being among the most damaging, yet solvable, stressors. While the threat of invasive terrestrial mammals on island flora and fauna is well recognized, recent studies have begun to illustrate their extended and destructive impacts on adjacent marine environments. Eradication of invasive mammals and restoration of native biota are promising tools to address both island and ocean management goals. The magnitude of the marine benefits of island restoration, however, is unlikely to be consistent across the globe. We propose a list of six environmental characteristics most likely to affect the strength of land-sea linkages: precipitation, elevation, vegetation cover, soil hydrology, oceanographic productivity, and wave energy. Global databases allow for the calculation of comparable metrics describing each environmental character across islands. Such metrics can be used today to evaluate relative potential for coupled land-sea conservation efforts and, with sustained investment in monitoring on land and sea, can be used in the future to refine science-based planning tools for integrated land-sea management. As conservation practitioners work to address the effects of climate change, ocean stressors, and biodiversity crises, it is essential that we maximize returns from our management investments. Linking efforts on land, including eradication of island invasive mammals, with marine restoration and protection should offer multiplied benefits to achieve concurrent global conservation goals.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Humanos , Biodiversidad , Especies Introducidas , Cambio Climático , Mamíferos
6.
J Acoust Soc Am ; 151(5): 3052, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35649949

RESUMEN

Four species of grouper (family Epinephlidae), Red Hind (Epinephelus guttatus), Nassau (Epinephelus striatus), Black (Mycteroperca bonaci), and Yellowfin Grouper (Mycteroperca venenosa) share an aggregation site in Little Cayman, Cayman Islands and produce sounds while aggregating. Continuous observation of these aggregations is challenging because traditional diver or ship-based methods are limited in time and space. Passive acoustic localization can overcome this challenge for sound-producing species, allowing observations over long durations and at fine spatial scales. A hydrophone array was deployed in February 2017 over a 9-day period that included Nassau Grouper spawning. Passive acoustic localization was used to find positions of the grouper-produced calls recorded during this time, which enabled the measurement of call source levels and evaluation of spatiotemporal aspects of calling. Yellowfin Grouper had the lowest mean peak-to-peak (PP) call source level, and Nassau Grouper had the highest mean PP call source level (143.7 and 155.2 dB re: 1 µPa at 1 m for 70-170 Hz, respectively). During the days that Nassau Grouper spawned, calling peaked after sunset. Similarly, when Red Hind calls were abundant, calls were highest in the afternoon and evening. The measured source levels can be used to estimate communication and detection ranges and implement passive acoustic density estimation for these fishes.


Asunto(s)
Lubina , Localización de Sonidos , Acústica , Animales , Sonido
7.
PLoS One ; 16(11): e0259716, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34788315

RESUMEN

White abalone (Haliotis sorenseni) was once commonly found in coastal waters of the Southern California Bight (SCB) and south to Punta Abreojos, Baja California, Mexico. During the 1970s, white abalone supported a commercial fishery, which reduced the population and resulted in the closure of the fishery in 1996. When population levels continued to decline, National Marine Fisheries Service (NMFS) listed the species as endangered under the Endangered Species Act. The California Department of Fish and Wildlife and NMFS began surveying the wild populations, propagating specimens in captivity, and protecting its seabed habitat. We modeled coarse-scale (17 x 17 km) historical (using fishery-dependent data [1955-1996]) and contemporary (using fishery-independent data [1996-2017]) distributions of white abalone throughout its historical domain using random forests and maximum entropy (MaxEnt), respectively, and its fine-scale (10 x 10 m) contemporary distribution (fishery-independent data) using MaxEnt. We also investigated potential outplanting habitat farther north under two scenarios of future climate conditions. The coarse-scale models identified potential regions to focus outplanting efforts within SCB while fine-scale models can inform population monitoring and outplanting activities in these particular areas. These models predict that areas north of Point Conception may become candidate outplant sites as seawater temperatures continue to rise in the future due to climate change. Collectively, these results provide guidance on the design and potential locations for experimental outplanting at such locations to ultimately improve methods and success of recovery efforts.


Asunto(s)
Especies en Peligro de Extinción , Gastrópodos , Animales , California , Cambio Climático , Ecosistema , Agua de Mar , Temperatura
8.
PeerJ ; 9: e11186, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33981495

RESUMEN

Commercial, recreational, and indigenous fisheries are critical to coastal economies and communities in the United States. For over three decades, the federal government has formally recognized the impact of fishery disasters via federal declarations. Despite these impacts, national syntheses of the dynamics, impacts, and causes of fishery disasters are lacking. We developed a nationwide Federal Fishery Disaster database using National Oceanic and Atmospheric Administration (NOAA) fishery disaster declarations and fishery revenue data. From 1989-2020, there were 71 federally approved fishery disasters (eleven are pending), which spanned every federal fisheries management region and coastal state in the country. To date, we estimate fishery disasters resulted in $2B (2019 USD) in Congressional allocations, and an additional, conservative estimate of $3.2B (2019 USD) in direct revenue loss. Despite this scale of impact, the disaster assistance process is largely ad hoc and lacks sufficient detail to properly assess allocation fairness and benefit. Nonetheless, fishery disasters increased in frequency over time, and the causes of disasters included a broad range of anthropogenic and environmental factors, with a recent shift to disasters now almost exclusively caused by extreme environmental events (e.g., marine heatwaves, hurricanes, and harmful algal blooms). Nationwide, 84.5% of fishery disasters were either partially or entirely attributed to extreme environmental events. As climate change drives higher rates of such extreme events, and as natural disaster assistance requests reach an all-time high, the federal system for fisheries disaster declaration and mitigation must evolve in order to effectively protect both fisheries sustainability and societal benefit.

9.
PeerJ ; 8: e10146, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194393

RESUMEN

Recent marine spatial planning efforts, including the management and monitoring of marine protected areas (MPAs), increasingly focus on the importance of stakeholder engagement. For nearly 15 years, the California Collaborative Fisheries Research Program (CCFRP) has partnered volunteer anglers with researchers, the fishing industry, and resource managers to monitor groundfishes in California's network of MPAs. While the program has succeeded in generating sustained biological observations, we know little about volunteer angler demography or the impact of participation on their perceptions and opinions on fisheries data or MPAs. In this study we surveyed CCFRP volunteers to learn about (a) volunteer angler demographics and attitudes toward groundfish management and stock health, (b) volunteer angler motivations for joining and staying in the program, and (c) whether participation in the program influenced volunteer angler opinions on the quality of fisheries data used in resource management and the establishment of MPAs in California. CCFRP volunteers were older and had higher fishing avidity than average within the California recreational angling community. Many self-identified as more conservation-minded than their peers in the recreational fishing community and had positive views of California groundfish management and stock health. Participation in science and giving back to fisheries resources were major motivating factors in their decision to become and remain CCFRP volunteers. Angler opinions toward MPAs were more positive after volunteering with CCFRP. Those who had volunteered for seven or more years with CCFRP were more likely than not to gain a positive opinion of MPAs. Our survey results provide evidence that long-term engagement of stakeholders in collaborative research positively influences stakeholder opinions regarding marine resource management, and highlights CCFRP's success in engaging citizen science stakeholders in collaborative fisheries research.

10.
J Hered ; 111(6): 539-547, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33141173

RESUMEN

Geographic variation in environmental temperature can select for local adaptation among conspecific populations. Divergence in gene expression across the transcriptome is a key mechanism for evolution of local thermal adaptation in many systems, yet the genetic mechanisms underlying this regulatory evolution remain poorly understood. Here we examine gene expression in 2 locally adapted Tigriopus californicus populations (heat tolerant San Diego, SD, and less tolerant Santa Cruz, SC) and their F1 hybrids during acute heat stress response. Allele-specific expression (ASE) in F1 hybrids was used to determine cis-regulatory divergence. We found that the number of genes showing significant allelic imbalance increased under heat stress compared to unstressed controls. This suggests that there is significant population divergence in cis-regulatory elements underlying heat stress response. Specifically, the number of genes showing an excess of transcripts from the more thermal tolerant (SD) population increased with heat stress while that number of genes with an SC excess was similar in both treatments. Inheritance patterns of gene expression also revealed that genes displaying SD-dominant expression phenotypes increase in number in response to heat stress; that is, across loci, gene expression in F1's following heat stress showed more similarity to SD than SC, a pattern that was absent in the control treatment. The observed patterns of ASE and inheritance of gene expression provide insight into the complex processes underlying local adaptation and thermal stress response.


Asunto(s)
Adaptación Fisiológica , Copépodos/genética , Regulación de la Expresión Génica/genética , Transcriptoma , Alelos , Animales , Evolución Biológica , Copépodos/fisiología , Femenino , Respuesta al Choque Térmico , Masculino , Fenotipo
11.
Ecol Appl ; 30(8): e02202, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32583579

RESUMEN

Anthropogenic impacts on riverine systems have, in part, led to management concerns regarding the population status of species using these systems. In an effort to assess the efficacy of restoration actions, and in order to improve monitoring of species of concern, managers have turned to PIT (passive integrated transponder) tag studies with in-stream detectors to monitor movements of tagged individuals throughout river networks. However, quantifying movements in a river network using PIT tag data with incomplete coverage and imperfect detections presents a challenge. We propose a flexible Bayesian analytic framework that models the imperfectly detected movements of tagged individuals in a nested PIT tag array river network. This model structure provides probabilistic estimates of up-stream migration routes for each tagged individual based on a set of underlying nested state variables. These movement estimates can be converted into abundance estimates when an estimate of abundance is available for a location within the river network. We apply the model framework to data from steelhead (Oncorhynchus mykiss) in the Upper Columbia River basin and evaluate model performance (precision/variance of simulated population sizes) as a function of population tagging rates and PIT tag array detection probability densities within the river system using a simulation framework. This simulation framework provides both model validation (precision) and the ability to evaluate expected performance improvements (variance) due to changes in tagging rates or PIT receiver array configuration. We also investigate the impact of different network configurations on model estimates. Results from such investigations can help inform decisions regarding future monitoring and management.


Asunto(s)
Oncorhynchus mykiss , Migración Animal , Animales , Teorema de Bayes , Humanos , Movimiento , Ríos
12.
Proc Natl Acad Sci U S A ; 117(3): 1587-1595, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31907312

RESUMEN

Many large-bodied marine fishes that form spawning aggregations, such as the Nassau grouper (Epinephelus striatus), have suffered regional overfishing due to exploitation during spawning. In response, marine resource managers in many locations have established marine protected areas or seasonal closures to recover these overfished stocks. The challenge in assessing management effectiveness lies largely in the development of accurate estimates to track stock size through time. For the past 15 y, the Cayman Islands government has taken a series of management actions aimed at recovering collapsed stocks of Nassau grouper. Importantly, the government also partnered with academic and nonprofit organizations to establish a research and monitoring program (Grouper Moon) aimed at documenting the impacts of conservation action. Here, we develop an integrated population model of 2 Cayman Nassau grouper stocks based on both diver-collected mark-resight observations and video censuses. Using both data types across multiple years, we fit parameters for a state-space model for population growth. We show that over the last 15 y the Nassau grouper population on Little Cayman has more than tripled in response to conservation efforts. Census data from Cayman Brac, while more sparse, show a similar pattern. These findings demonstrate that spatial and seasonal closures aimed at rebuilding aggregation-based fisheries can foster conservation success.


Asunto(s)
Lubina/fisiología , Conservación de los Recursos Naturales , Animales , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/estadística & datos numéricos , Monitoreo del Ambiente , Explotaciones Pesqueras , Peces/fisiología , Modelos Biológicos , Océanos y Mares , Densidad de Población , Encuestas y Cuestionarios , Indias Occidentales
13.
Sci Rep ; 8(1): 13073, 2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-30166587

RESUMEN

Increasing complexity in human-environment interactions at multiple watershed scales presents major challenges to sediment source apportionment data acquisition and analysis. Herein, we present a step-change in the application of Bayesian mixing models: Deconvolutional-MixSIAR (D-MIXSIAR) to underpin sustainable management of soil and sediment. This new mixing model approach allows users to directly account for the 'structural hierarchy' of a river basin in terms of sub-watershed distribution. It works by deconvoluting apportionment data derived for multiple nodes along the stream-river network where sources are stratified by sub-watershed. Source and mixture samples were collected from two watersheds that represented (i) a longitudinal mixed agricultural watershed in the south west of England which had a distinct upper and lower zone related to topography and (ii) a distributed mixed agricultural and forested watershed in the mid-hills of Nepal with two distinct sub-watersheds. In the former, geochemical fingerprints were based upon weathering profiles and anthropogenic soil amendments. In the latter compound-specific stable isotope markers based on soil vegetation cover were applied. Mixing model posterior distributions of proportional sediment source contributions differed when sources were pooled across the watersheds (pooled-MixSIAR) compared to those where source terms were stratified by sub-watershed and the outputs deconvoluted (D-MixSIAR). In the first example, the stratified source data and the deconvolutional approach provided greater distinction between pasture and cultivated topsoil source signatures resulting in a different posterior distribution to non-deconvolutional model (conventional approaches over-estimated the contribution of cultivated land to downstream sediment by 2 to 5 times). In the second example, the deconvolutional model elucidated a large input of sediment delivered from a small tributary resulting in differences in the reported contribution of a discrete mixed forest source. Overall D-MixSIAR model posterior distributions had lower (by ca 25-50%) uncertainty and quicker model run times. In both cases, the structured, deconvoluted output cohered more closely with field observations and local knowledge underpinning the need for closer attention to hierarchy in source and mixture terms in river basin source apportionment. Soil erosion and siltation challenge the energy-food-water-environment nexus. This new tool for source apportionment offers wider application across complex environmental systems affected by natural and human-induced change and the lessons learned are relevant to source apportionment applications in other disciplines.

14.
PeerJ ; 6: e5096, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29942712

RESUMEN

The ongoing evolution of tracer mixing models has resulted in a confusing array of software tools that differ in terms of data inputs, model assumptions, and associated analytic products. Here we introduce MixSIAR, an inclusive, rich, and flexible Bayesian tracer (e.g., stable isotope) mixing model framework implemented as an open-source R package. Using MixSIAR as a foundation, we provide guidance for the implementation of mixing model analyses. We begin by outlining the practical differences between mixture data error structure formulations and relate these error structures to common mixing model study designs in ecology. Because Bayesian mixing models afford the option to specify informative priors on source proportion contributions, we outline methods for establishing prior distributions and discuss the influence of prior specification on model outputs. We also discuss the options available for source data inputs (raw data versus summary statistics) and provide guidance for combining sources. We then describe a key advantage of MixSIAR over previous mixing model software-the ability to include fixed and random effects as covariates explaining variability in mixture proportions and calculate relative support for multiple models via information criteria. We present a case study of Alligator mississippiensis diet partitioning to demonstrate the power of this approach. Finally, we conclude with a discussion of limitations to mixing model applications. Through MixSIAR, we have consolidated the disparate array of mixing model tools into a single platform, diversified the set of available parameterizations, and provided developers a platform upon which to continue improving mixing model analyses in the future.

15.
PeerJ ; 5: e3221, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28462031

RESUMEN

Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L.) under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9-60.9 million ha-1. We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was ∼27.9 million butterflies ha-1 (95% CI [2.4-80.7] million ha-1); the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha-1). Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asclepias spp.) lost (0.86 billion stems) in the northern US plus the amount of milkweed remaining (1.34 billion stems), we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates. The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations.

16.
Ecology ; 97(10): 2562-2569, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27859126

RESUMEN

Mixing models are statistical tools that use biotracers to probabilistically estimate the contribution of multiple sources to a mixture. These biotracers may include contaminants, fatty acids, or stable isotopes, the latter of which are widely used in trophic ecology to estimate the mixed diet of consumers. Bayesian implementations of mixing models using stable isotopes (e.g., MixSIR, SIAR) are regularly used by ecologists for this purpose, but basic questions remain about when each is most appropriate. In this study, we describe the structural differences between common mixing model error formulations in terms of their assumptions about the predation process. We then introduce a new parameterization that unifies these mixing model error structures, as well as implicitly estimates the rate at which consumers sample from source populations (i.e., consumption rate). Using simulations and previously published mixing model datasets, we demonstrate that the new error parameterization outperforms existing models and provides an estimate of consumption. Our results suggest that the error structure introduced here will improve future mixing model estimates of animal diet.


Asunto(s)
Teorema de Bayes , Ecología , Cadena Alimentaria , Animales , Dieta , Isótopos , Isótopos de Nitrógeno
17.
Sci Rep ; 6: 23265, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26997124

RESUMEN

The Eastern, migratory population of monarch butterflies (Danaus plexippus), an iconic North American insect, has declined by ~80% over the last decade. The monarch's multi-generational migration between overwintering grounds in central Mexico and the summer breeding grounds in the northern U.S. and southern Canada is celebrated in all three countries and creates shared management responsibilities across North America. Here we present a novel Bayesian multivariate auto-regressive state-space model to assess quasi-extinction risk and aid in the establishment of a target population size for monarch conservation planning. We find that, given a range of plausible quasi-extinction thresholds, the population has a substantial probability of quasi-extinction, from 11-57% over 20 years, although uncertainty in these estimates is large. Exceptionally high population stochasticity, declining numbers, and a small current population size act in concert to drive this risk. An approximately 5-fold increase of the monarch population size (relative to the winter of 2014-15) is necessary to halve the current risk of quasi-extinction across all thresholds considered. Conserving the monarch migration thus requires active management to reverse population declines, and the establishment of an ambitious target population size goal to buffer against future environmentally driven variability.


Asunto(s)
Mariposas Diurnas/fisiología , Conservación de los Recursos Naturales , Migración Animal , Animales , Teorema de Bayes , Especies en Peligro de Extinción , Extinción Biológica , Análisis Multivariante , América del Norte , Densidad de Población , Dinámica Poblacional , Riesgo
18.
Ecol Evol ; 5(10): 2115-25, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26045960

RESUMEN

Myriad human activities increasingly threaten the existence of many species. A variety of conservation interventions such as habitat restoration, protected areas, and captive breeding have been used to prevent extinctions. Evaluating the effectiveness of these interventions requires appropriate statistical methods, given the quantity and quality of available data. Historically, analysis of variance has been used with some form of predetermined before-after control-impact design to estimate the effects of large-scale experiments or conservation interventions. However, ad hoc retrospective study designs or the presence of random effects at multiple scales may preclude the use of these tools. We evaluated the effects of a large-scale supplementation program on the density of adult Chinook salmon Oncorhynchus tshawytscha from the Snake River basin in the northwestern United States currently listed under the U.S. Endangered Species Act. We analyzed 43 years of data from 22 populations, accounting for random effects across time and space using a form of Bayesian hierarchical time-series model common in analyses of financial markets. We found that varying degrees of supplementation over a period of 25 years increased the density of natural-origin adults, on average, by 0-8% relative to nonsupplementation years. Thirty-nine of the 43 year effects were at least two times larger in magnitude than the mean supplementation effect, suggesting common environmental variables play a more important role in driving interannual variability in adult density. Additional residual variation in density varied considerably across the region, but there was no systematic difference between supplemented and reference populations. Our results demonstrate the power of hierarchical Bayesian models to detect the diffuse effects of management interventions and to quantitatively describe the variability of intervention success. Nevertheless, our study could not address whether ecological factors (e.g., competition) were more important than genetic considerations (e.g., inbreeding depression) in determining the response to supplementation.

19.
PLoS One ; 9(5): e97508, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24830641

RESUMEN

To address patterns of genetic connectivity in a mass-aggregating marine fish, we analyzed genetic variation in mitochondrial DNA (mtDNA), microsatellites, and single nucleotide polymorphisms (SNPs) for Nassau grouper (Epinephelus striatus). We expected Nassau grouper to exhibit genetic differentiation among its subpopulations due to its reproductive behavior and retentive oceanographic conditions experienced across the Caribbean basin. All samples were genotyped for two mitochondrial markers and 9 microsatellite loci, and a subset of samples were genotyped for 4,234 SNPs. We found evidence of genetic differentiation in a Caribbean-wide study of this mass-aggregating marine fish using mtDNA (FST = 0.206, p<0.001), microsatellites (FST = 0.002, p = 0.004) and SNPs (FST = 0.002, p = 0.014), and identified three potential barriers to larval dispersal. Genetically isolated regions identified in our work mirror those seen for other invertebrate and fish species in the Caribbean basin. Oceanographic regimes in the Caribbean may largely explain patterns of genetic differentiation among Nassau grouper subpopulations. Regional patterns observed warrant standardization of fisheries management and conservation initiatives among countries within genetically isolated regions.


Asunto(s)
ADN Mitocondrial/genética , Genética de Población , Repeticiones de Microsatélite/genética , Perciformes/genética , Polimorfismo de Nucleótido Simple , Animales , Región del Caribe , Explotaciones Pesqueras , Flujo Génico , Genotipo , Geografía , Desequilibrio de Ligamiento , Oceanografía , Filogenia , Filogeografía , Análisis de Secuencia de ADN
20.
Ecol Lett ; 17(6): 743-55, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24674603

RESUMEN

An individual's phenotype will usually influence its probability of survival. However, when evaluating the dynamics of populations, the role of selective mortality is not always clear. Not all mortality is selective, patterns of selective mortality may vary, and it is often unknown how selective mortality compares or interacts with other sources of mortality. As a result, there is seldom a clear expectation for how changes in the phenotypic composition of populations will translate into differences in average survival. We address these issues by evaluating how selective mortality affects recruitment of fish populations. First, we provide a quantitative review of selective mortality. Our results show that most of the mortality during early life is selective, and that variation in phenotypes can have large effects on survival. Next, we describe an analytical framework that accounts for variation in selection, while also describing the amount of selective mortality experienced by different cohorts recruiting to a single population. This framework is based on reconstructing fitness surfaces from phenotypic selection measurements, and can be employed for either single or multiple traits. Finally, we show how this framework can be integrated with models of density-dependent survival to improve our understanding of recruitment variability and population dynamics.


Asunto(s)
Modelos Biológicos , Fenotipo , Animales , Tamaño Corporal , Peces/anatomía & histología , Peces/fisiología , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...