Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Radiat Oncol ; 19(1): 14, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38267999

RESUMEN

BACKGROUND: Monte Carlo simulation of radiation transport for medical linear accelerators (linacs) requires accurate knowledge of the geometrical description of the linac head. Since the geometry of Varian TrueBeam machines has not been disclosed, the manufacturer distributes phase-space files of the linac patient-independent part to allow researchers to compute absorbed dose distributions using the Monte Carlo method. This approach limits the possibility of achieving an arbitrarily small statistical uncertainty. This work investigates the use of the geometry of the Varian Clinac 2100, which is included in the Monte Carlo system PRIMO, as a surrogate. METHODS: Energy, radial and angular distributions extracted from the TrueBeam phase space files published by the manufacturer and from phase spaces tallied with PRIMO for the Clinac 2100 were compared for the 6, 8, 10 and 15 MV flattened-filtered beams. Dose distributions in water computed for the two sets of PSFs were compared with the Varian Representative Beam Data (RBD) for square fields with sides ranging from 3 to 30 cm. Output factors were calculated for square fields with sides ranging from 2 to 40 cm. RESULTS: Excellent agreement with the RBD was obtained for the simulations that employed the phase spaces distributed by Varian as well as for those that used the surrogate geometry, reaching in both cases Gamma ([Formula: see text], 2 mm) pass rates larger than [Formula: see text], except for the 15 MV surrogate. This result supports previous investigations that suggest a change in the material composition of the TrueBeam 15 MV flattening filter. In order to get the said agreement, PRIMO simulations were run using enlarged transport parameters to compensate the discrepancies between the actual and surrogate geometries. CONCLUSIONS: This work sustains the claim that the simulation of the 6, 8 and 10 MV flattening-filtered beams of the TrueBeam linac can be performed using the Clinac 2100 model of PRIMO without significant loss of accuracy.


Asunto(s)
Factores de Transcripción , Humanos , Método de Montecarlo , Simulación por Computador , Rayos gamma
2.
Phys Med ; 112: 102660, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37562234

RESUMEN

PURPOSE: The Transit-Guided Radiation Therapy (TGRT) technique is a novel technique aimed to quantify the position error of a patient by using the transit portal images (TPI) of the treatment fields. Despite of the promising preliminary results, about 4% of the cases would have led to position overcorrections. In this work, the TGRT formalism is refined to improve its accuracy and, especially, to decrease the risk of overcorrections. METHODS: A second free parameter accounting for beam hardening has been added to the attenuation model of the TGRT formalism. Five treatment plans combining different delivery techniques and tumour sites have been delivered to an anthropomorphic phantom. TPIs have been obtained under a set of random couch shifts for each field. For each TPI, both the original and the refined TGRT formalism have been used to estimate the underlying true shift. RESULTS: With respect the original formalism, the refined formalism: (i) decreased both the number (from 5% to 1%) and the magnitude of the overcorrections; (ii) lowered the detection threshold (from approximately 1 mm to <0.3 mm); (iii) largely improved the accuracy in tumour sites with large mass thickness variations; and (iv) largely improved the accuracy for true shifts below 5 mm. For true shifts above 5 mm, the accuracy was slightly impaired. CONCLUSIONS: The refined TGRT formalism performed globally better than the original TGRT formalism and it largely reduced the risk of overcorrections. Further refinements of the TGRT formalism should focus on true shifts above 5 mm.

3.
Phys Med Biol ; 67(15)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35767982

RESUMEN

Objective.Transitin vivodosimetry methods monitor that the dose distribution is delivered as planned. However, they have a limited ability to identify and to quantify the cause of a given disagreement, especially those caused by position errors. This paper describes a proof of concept of a simplein vivotechnique to infer a position error from a transit portal image (TPI).Approach.For a given treatment field, the impact of a position error is modeled as a perturbation of the corresponding reference (unperturbed) TPI. The perturbation model determines the patient translation, described by a shift vector, by comparing a givenin vivoTPI to the corresponding reference TPI. Patient rotations can also be determined by applying this formalism to independent regions of interest over the patient. Eight treatment plans have been delivered to an anthropomorphic phantom under a large set of couch shifts (<15 mm) and rotations (<10°) to experimentally validate this technique, which we have named Transit-Guided Radiation Therapy (TGRT).Main results.The root mean squared error (RMSE) between the determined and the true shift magnitudes was 1.0/2.4/4.9 mm for true shifts ranging between 0-5/5-10/10-15 mm, respectively. The angular accuracy of the determined shift directions was 12° ± 14°. The RMSE between the determined and the true rotations was 0.5°. The TGRT technique decoupled translations and rotations satisfactorily. In 96% of the cases, the TGRT technique decreased the existing position error. The detection threshold of the TGRT technique was around 1 mm and it was nearly independent of the tumor site, delivery technique, beam energy or patient thickness.Significance.TGRT is a promising technique that not only provides reliable determinations of the position errors without increasing the required equipment, acquisition time or patient dose, but it also adds on-line correction capabilities to existing methods currently using TPIs.


Asunto(s)
Equipos y Suministros Eléctricos , Planificación de la Radioterapia Asistida por Computador , Humanos , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos
4.
Radiat Oncol ; 14(1): 6, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-30634994

RESUMEN

BACKGROUND: The availability of photon and electron spectra in digital form from current accelerators and Monte Carlo (MC) systems is scarce, and one of the packages widely used refers to linacs with a reduced clinical use nowadays. Such spectra are mainly intended for the MC calculation of detector-related quantities in conventional broad beams, where the use of detailed phase-space files (PSFs) is less critical than for MC-based treatment planning applications, but unlike PSFs, spectra can easily be transferred to other computer systems and users. METHODS: A set of spectra for a range of Varian linacs has been calculated using the PENELOPE/PRIMO MC system. They have been extracted from PSFs tallied for field sizes of 10 cm × 10 cm and 15 cm × 15 cm for photon and electron beams, respectively. The influence of the spectral bin width and of the beam central axis region used to extract the spectra have been analyzed. RESULTS: Spectra have been compared to those by other authors showing good agreement with those obtained using the, now superseded, EGS4/BEAM MC code, but significant differences with the most widely used photon data set. Other spectra, particularly for electron beams, have not been published previously for the machines simulated in this work. The influence of the bin width on the spectrum mean energy for 6 and 10 MV beams has been found to be negligible. The size of the region used to extract the spectra yields differences of up to 40% for the mean energies in 10 MV beams, but the maximum difference for TPR 20,10 values derived from depth-dose distributions does not exceed 2% relative to those obtained using the PSFs. This corresponds to kQ differences below 0.2% for a typical Farmer-type chamber, considered to be negligible for reference dosimetry. Different configurations for using electron spectra have been compared for 6 MeV beams, concluding that the geometry used for tallying the PSFs used to extract the spectra must be accounted for in subsequent calculations using the spectra as a source. CONCLUSIONS: An up-to-date set of consistent spectra for Varian accelerators suitable for the calculation of detector-related quantities in conventional broad beams has been developed and made available in digital form.


Asunto(s)
Electrones , Neoplasias/radioterapia , Aceleradores de Partículas/instrumentación , Fantasmas de Imagen , Fotones , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Método de Montecarlo , Planificación de Atención al Paciente , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
5.
Radiat Oncol ; 13(1): 256, 2018 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-30591056

RESUMEN

BACKGROUND: PRIMO is a dose verification system based on the general-purpose Monte Carlo radiation transport code PENELOPE, which implements an accurate physics model of the interaction cross sections and the radiation transport process but with low computational efficiency as compared with fast Monte Carlo codes. One of these fast Monte Carlo codes is the Dose Planning Method (DPM). The purpose of this work is to describe the adaptation of DPM as an alternative PRIMO computation engine, to validate its performance against PENELOPE and to validate it for some specific cases. METHODS: DPM was parallelized and modified to perform radiation transport in quadric geometries, which are used to describe linacs, thus allowing the simulation of dynamic treatments. To benchmark the new code versus PENELOPE, both in terms of accuracy of results and simulation time, several tests were performed, namely, irradiation of a multi-layer phantom, irradiation of a water phantom using a collimating pattern defined by the multileaf collimator (MLC), and four clinical cases. The gamma index, with passing criteria of 1 mm/1%, was used to compare the absorbed dose distributions. Clinical cases were compared using a 3-D gamma analysis. RESULTS: The percentage of voxels passing the gamma criteria always exceeded 99% for the phantom cases, with the exception of the transport through air, for which dose differences between DPM and PENELOPE were as large as 24%. The corresponding percentage for the clinical cases was larger than 99%. The speedup factor between DPM and PENELOPE ranged from 2.5 ×, for the simulation of the radiation transport through a MLC and the subsequent dose estimation in a water phantom, up to 11.8 × for a lung treatment. A further increase of the computational speed, up to 25 ×, can be obtained in the clinical cases when a voxel size of (2.5 mm)3 is used. CONCLUSIONS: DPM has been incorporated as an efficient and accurate Monte Carlo engine for dose estimation in PRIMO. It allows the concatenated simulation of the patient-dependent part of the linac and the patient geometry in static and dynamic treatments. The discrepancy observed between DPM and PENELOPE, which is due to an artifact of the cross section interpolation algorithm for low energy electrons in air, does not affect the results in other materials.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias Pulmonares/radioterapia , Método de Montecarlo , Aceleradores de Partículas/instrumentación , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador/métodos , Algoritmos , Simulación por Computador , Humanos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Programas Informáticos
7.
Med Phys ; 45(1): e1-e5, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29178605

RESUMEN

Studies involving Monte Carlo simulations are common in both diagnostic and therapy medical physics research, as well as other fields of basic and applied science. As with all experimental studies, the conditions and parameters used for Monte Carlo simulations impact their scope, validity, limitations, and generalizability. Unfortunately, many published peer-reviewed articles involving Monte Carlo simulations do not provide the level of detail needed for the reader to be able to properly assess the quality of the simulations. The American Association of Physicists in Medicine Task Group #268 developed guidelines to improve reporting of Monte Carlo studies in medical physics research. By following these guidelines, manuscripts submitted for peer-review will include a level of relevant detail that will increase the transparency, the ability to reproduce results, and the overall scientific value of these studies. The guidelines include a checklist of the items that should be included in the Methods, Results, and Discussion sections of manuscripts submitted for peer-review. These guidelines do not attempt to replace the journal reviewer, but rather to be a tool during the writing and review process. Given the varied nature of Monte Carlo studies, it is up to the authors and the reviewers to use this checklist appropriately, being conscious of how the different items apply to each particular scenario. It is envisioned that this list will be useful both for authors and for reviewers, to help ensure the adequate description of Monte Carlo studies in the medical physics literature.


Asunto(s)
Método de Montecarlo , Física , Informe de Investigación , Sociedades Científicas , Lista de Verificación
8.
Med Phys ; 45(2): 629-634, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29080289

RESUMEN

PURPOSE: Monte Carlo simulations require large number of histories to obtain reliable estimates of the quantity of interest and its associated statistical uncertainty. Numerous variance reduction techniques (VRTs) have been employed to increase computational efficiency by reducing the statistical uncertainty. We investigate the effect of two VRTs for optical transport methods on accuracy and computing time for the estimation of variance (noise) in x-ray imaging detectors. METHODS: We describe two VRTs. In the first, we preferentially alter the direction of the optical photons to increase detection probability. In the second, we follow only a fraction of the total optical photons generated. In both techniques, the statistical weight of photons is altered to maintain the signal mean. We use fastdetect2, an open-source, freely available optical transport routine from the hybridmantis package. We simulate VRTs for a variety of detector models and energy sources. The imaging data from the VRT simulations are then compared to the analog case (no VRT) using pulse height spectra, Swank factor, and the variance of the Swank estimate. RESULTS: We analyze the effect of VRTs on the statistical uncertainty associated with Swank factors. VRTs increased the relative efficiency by as much as a factor of 9. We demonstrate that we can achieve the same variance of the Swank factor with less computing time. With this approach, the simulations can be stopped when the variance of the variance estimates reaches the desired level of uncertainty. CONCLUSION: We implemented analytic estimates of the variance of Swank factor and demonstrated the effect of VRTs on image quality calculations. Our findings indicate that the Swank factor is dominated by the x-ray interaction profile as compared to the additional uncertainty introduced in the optical transport by the use of VRTs. For simulation experiments that aim at reducing the uncertainty in the Swank factor estimate, any of the proposed VRT can be used for increasing the relative efficiency.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Método de Montecarlo , Relación Señal-Ruido , Control de Calidad
9.
Phys Med Biol ; 61(6): 2389-406, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26943497

RESUMEN

This work calculates beam quality correction factors (kQ) in monoenergetic proton beams using detailed Monte Carlo simulation of ionization chambers. It uses the Monte Carlo code penh and the electronic stopping powers resulting from the adoption of two different sets of mean excitation energy values for water and graphite: (i) the currently ICRU 37 and ICRU 49 recommended Iw = 75 eV and Ig = 78 eV and (ii) the recently proposed Iw = 78 eV and Ig = 81.1 eV. Twelve different ionization chambers were studied. The k Q factors calculated using the two different sets of I-values were found to agree with each other within 1.6% or better. k Q factors calculated using current ICRU I-values were found to agree within 2.3% or better with the k Q factors tabulated in IAEA TRS-398, and within 1% or better with experimental values published in the literature. k Q factors calculated using the new I-values were also found to agree within 1.1% or better with the experimental values. This work concludes that perturbation correction factors in proton beams--currently assumed to be equal to unity--are in fact significantly different from unity for some of the ionization chambers studied.


Asunto(s)
Terapia de Protones/métodos , Protones , Planificación de la Radioterapia Asistida por Computador/métodos , Método de Montecarlo , Terapia de Protones/instrumentación , Dosis de Radiación
10.
Med Phys ; 42(6): 2877-81, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26127040

RESUMEN

PURPOSE: The Monte Carlo simulation of electron transport in Linac targets using the condensed history technique is known to be problematic owing to a potential dependence of absorbed dose distributions on the electron step length. In the PENELOPE code, the step length is partially determined by the transport parameters C1 and C2. The authors have investigated the effect on the absorbed dose distribution of the values given to these parameters in the target. METHODS: A monoenergetic 6.26 MeV electron pencil beam from a point source was simulated impinging normally on a cylindrical tungsten target. Electrons leaving the tungsten were discarded. Radial absorbed dose profiles were obtained at 1.5 cm of depth in a water phantom located at 100 cm for values of C1 and C2 in the target both equal to 0.1, 0.01, or 0.001. A detailed simulation case was also considered and taken as the reference. Additionally, lateral dose profiles were estimated and compared with experimental measurements for a 6 MV photon beam of a Varian Clinac 2100 for the cases of C1 and C2 both set to 0.1 or 0.001 in the target. RESULTS: On the central axis, the dose obtained for the case C1 = C2 = 0.1 shows a deviation of (17.2% ± 1.2%) with respect to the detailed simulation. This difference decreases to (3.7% ± 1.2%) for the case C1 = C2 = 0.01. The case C1 = C2 = 0.001 produces a radial dose profile that is equivalent to that of the detailed simulation within the reached statistical uncertainty of 1%. The effect is also appreciable in the crossline dose profiles estimated for the realistic geometry of the Linac. In another simulation, it was shown that the error made by choosing inappropriate transport parameters can be masked by tuning the energy and focal spot size of the initial beam. CONCLUSIONS: The use of large path lengths for the condensed simulation of electrons in a Linac target with PENELOPE conducts to deviations of the dose in the patient or phantom. Based on the results obtained in this work, values of C1 and C2 larger than 0.001 should not be used in Linac targets without further investigation.


Asunto(s)
Algoritmos , Método de Montecarlo , Aceleradores de Partículas , Transporte de Electrón , Fantasmas de Imagen , Agua
11.
Med Phys ; 41(5): 051707, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24784373

RESUMEN

PURPOSE: Phase-space files for Monte Carlo simulation of the Varian TrueBeam beams have been made available by Varian. The aim of this study is to evaluate the accuracy of the distributed phase-space files for flattening filter free (FFF) beams, against experimental measurements from ten TrueBeam Linacs. METHODS: The phase-space files have been used as input in PRIMO, a recently released Monte Carlo program based on the PENELOPE code. Simulations of 6 and 10 MV FFF were computed in a virtual water phantom for field sizes 3 × 3, 6 × 6, and 10 × 10 cm(2) using 1 × 1 × 1 mm(3) voxels and for 20 × 20 and 40 × 40 cm(2) with 2 × 2 × 2 mm(3) voxels. The particles contained in the initial phase-space files were transported downstream to a plane just above the phantom surface, where a subsequent phase-space file was tallied. Particles were transported downstream this second phase-space file to the water phantom. Experimental data consisted of depth doses and profiles at five different depths acquired at SSD = 100 cm (seven datasets) and SSD = 90 cm (three datasets). Simulations and experimental data were compared in terms of dose difference. Gamma analysis was also performed using 1%, 1 mm and 2%, 2 mm criteria of dose-difference and distance-to-agreement, respectively. Additionally, the parameters characterizing the dose profiles of unflattened beams were evaluated for both measurements and simulations. RESULTS: Analysis of depth dose curves showed that dose differences increased with increasing field size and depth; this effect might be partly motivated due to an underestimation of the primary beam energy used to compute the phase-space files. Average dose differences reached 1% for the largest field size. Lateral profiles presented dose differences well within 1% for fields up to 20 × 20 cm(2), while the discrepancy increased toward 2% in the 40 × 40 cm(2) cases. Gamma analysis resulted in an agreement of 100% when a 2%, 2 mm criterion was used, with the only exception of the 40 × 40 cm(2) field (∼95% agreement). With the more stringent criteria of 1%, 1 mm, the agreement reduced to almost 95% for field sizes up to 10 × 10 cm(2), worse for larger fields. Unflatness and slope FFF-specific parameters are in line with the possible energy underestimation of the simulated results relative to experimental data. CONCLUSIONS: The agreement between Monte Carlo simulations and experimental data proved that the evaluated Varian phase-space files for FFF beams from TrueBeam can be used as radiation sources for accurate Monte Carlo dose estimation, especially for field sizes up to 10 × 10 cm(2), that is the range of field sizes mostly used in combination to the FFF, high dose rate beams.


Asunto(s)
Simulación por Computador , Radioterapia/instrumentación , Radioterapia/métodos , Modelos Biológicos , Método de Montecarlo , Radiometría/instrumentación , Dosificación Radioterapéutica , Programas Informáticos , Incertidumbre , Agua
12.
Med Phys ; 41(4): 041711, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24694131

RESUMEN

PURPOSE: To determine detector-specific output correction factors,[Formula: see text], in 6 MV small photon beams for air and liquid ionization chambers, silicon diodes, and diamond detectors from two manufacturers. METHODS: Field output factors, defined according to the international formalism published byAlfonso et al. [Med. Phys. 35, 5179-5186 (2008)], relate the dosimetry of small photon beams to that of the machine-specific reference field; they include a correction to measured ratios of detector readings, conventionally used as output factors in broad beams. Output correction factors were calculated with the PENELOPE Monte Carlo (MC) system with a statistical uncertainty (type-A) of 0.15% or lower. The geometries of the detectors were coded using blueprints provided by the manufacturers, and phase-space files for field sizes between 0.5 × 0.5 cm(2) and 10 × 10 cm(2) from a Varian Clinac iX 6 MV linac used as sources. The output correction factors were determined scoring the absorbed dose within a detector and to a small water volume in the absence of the detector, both at a depth of 10 cm, for each small field and for the reference beam of 10 × 10 cm(2). RESULTS: The Monte Carlo calculated output correction factors for the liquid ionization chamber and the diamond detector were within about ± 1% of unity even for the smallest field sizes. Corrections were found to be significant for small air ionization chambers due to their cavity dimensions, as expected. The correction factors for silicon diodes varied with the detector type (shielded or unshielded), confirming the findings by other authors; different corrections for the detectors from the two manufacturers were obtained. The differences in the calculated factors for the various detectors were analyzed thoroughly and whenever possible the results were compared to published data, often calculated for different accelerators and using the EGSnrc MC system. The differences were used to estimate a type-B uncertainty for the correction factors. Together with the type-A uncertainty from the Monte Carlo calculations, an estimation of the combined standard uncertainty was made, assigned to the mean correction factors from various estimates. CONCLUSIONS: The present work provides a consistent and specific set of data for the output correction factors of a broad set of detectors in a Varian Clinac iX 6 MV accelerator and contributes to improving the understanding of the physics of small photon beams. The correction factors cannot in general be neglected for any detector and, as expected, their magnitude increases with decreasing field size. Due to the reduced number of clinical accelerator types currently available, it is suggested that detector output correction factors be given specifically for linac models and field sizes, rather than for a beam quality specifier that necessarily varies with the accelerator type and field size due to the different electron spot dimensions and photon collimation systems used by each accelerator model.


Asunto(s)
Método de Montecarlo , Fotones/uso terapéutico , Planificación de la Radioterapia Asistida por Computador/métodos , Diamante , Radiometría , Silicio , Incertidumbre
14.
Int J Radiat Oncol Biol Phys ; 83(4): 1330-7, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22245192

RESUMEN

PURPOSE: External beam radiotherapy is the only conservative curative approach for Stage I non-Hodgkin lymphomas of the conjunctiva. The target volume is geometrically complex because it includes the eyeball and lid conjunctiva. Furthermore, the target volume is adjacent to radiosensitive structures, including the lens, lacrimal glands, cornea, retina, and papilla. The radiotherapy planning and optimization requires accurate calculation of the dose in these anatomical structures that are much smaller than the structures traditionally considered in radiotherapy. Neither conventional treatment planning systems nor dosimetric measurements can reliably determine the dose distribution in these small irradiated volumes. METHODS AND MATERIALS: The Monte Carlo simulations of a Varian Clinac 2100 C/D and human eye were performed using the penelope and penEasyLinac codes. Dose distributions and dose volume histograms were calculated for the bulbar conjunctiva, cornea, lens, retina, papilla, lacrimal gland, and anterior and posterior hemispheres. RESULTS: The simulated results allow choosing the most adequate treatment setup configuration, which is an electron beam energy of 6 MeV with additional bolus and collimation by a cerrobend block with a central cylindrical hole of 3.0 cm diameter and central cylindrical rod of 1.0 cm diameter. CONCLUSIONS: Monte Carlo simulation is a useful method to calculate the minute dose distribution in ocular tissue and to optimize the electron irradiation technique in highly critical structures. Using a voxelized eye phantom based on patient computed tomography images, the dose distribution can be estimated with a standard statistical uncertainty of less than 2.4% in 3 min using a computing cluster with 30 cores, which makes this planning technique clinically relevant.


Asunto(s)
Neoplasias de la Conjuntiva/cirugía , Electrones/uso terapéutico , Linfoma no Hodgkin/cirugía , Método de Montecarlo , Radiocirugia/métodos , Radioterapia Guiada por Imagen/métodos , Neoplasias de la Conjuntiva/patología , Humanos , Linfoma no Hodgkin/patología , Órganos en Riesgo , Fantasmas de Imagen , Radiocirugia/instrumentación , Radiocirugia/normas , Radioterapia Guiada por Imagen/instrumentación , Radioterapia Guiada por Imagen/normas
15.
Med Phys ; 38(11): 5887-95, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22047353

RESUMEN

PURPOSE: Two new codes, PENEASY and PENEASYLINAC, which automate the Monte Carlo simulation of Varian Clinacs of the 600, 1800, 2100, and 2300 series, together with their electron applicators and multileaf collimators, are introduced. The challenging case of a relatively small and far-from-axis field has been studied with these tools. METHODS: PENEASY is a modular, general-purpose main program for the PENELOPE Monte Carlo system that includes various source models, tallies and variance-reduction techniques (VRT). The code includes a new geometry model that allows the superposition of voxels and objects limited by quadric surfaces. A variant of the VRT known as particle splitting, called fan splitting, is also introduced. PENEASYLINAC, in turn, automatically generates detailed geometry and configuration files to simulate linacs with PENEASY. These tools are applied to the generation of phase-space files, and of the corresponding absorbed dose distributions in water, for two 6 MV photon beams from a Varian Clinac 2100 C∕D: a 40 × 40 cm(2) centered field; and a 3 × 5 cm(2) field centered at (4.5, -11.5) cm from the beam central axis. This latter configuration implies the largest possible over-traveling values of two of the jaws. Simulation results for the depth dose and lateral profiles at various depths are compared, by using the gamma index, with experimental values obtained with a PTW 31002 ionization chamber. The contribution of several VRTs to the computing speed of the more demanding off-axis case is analyzed. RESULTS: For the 40 × 40 cm(2) field, the percentages γ(1) and γ(1.2) of voxels with gamma indices (using 0.2 cm and 2% criteria) larger than unity and larger than 1.2 are 0.2% and 0%, respectively. For the 3 × 5 cm(2) field, γ(1) = 0%. These figures indicate an excellent agreement between simulation and experiment. The dose distribution for the off-axis case with voxels of 2.5 × 2.5 × 2.5 mm(3) and an average standard statistical uncertainty of 2% (1σ) is computed in 3.1 h on a single core of a 2.8 GHz Intel Core 2 Duo processor. This result is obtained with the optimal combination of the tested VRTs. In particular, fan splitting for the off-axis case accelerates execution by a factor of 240 with respect to standard particle splitting. CONCLUSIONS: PENEASY and PENEASYLINAC can simulate the considered Varian Clinacs both in an accurate and efficient manner. Fan splitting is crucial to achieve simulation results for the off-axis field in an affordable amount of CPU time. Work to include Elekta linacs and to develop a graphical interface that will facilitate user input is underway.


Asunto(s)
Método de Montecarlo , Radiometría/métodos , Automatización
16.
Med Dosim ; 36(2): 160-5, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20510603

RESUMEN

A new analytical formalism has been published recently that provides all the parameters necessary for geometrical field matching in radiotherapy. The present work applies the general expressions for craniospinal irradiation, breast irradiation with a supraclavicular half-field, and breast irradiation with a supraclavicular full-field. We also explore the formalism as a tool to analyze and compare different techniques. Field matching is achieved by imposing both parallelism and coincidence between the side planes of adjacent fields. The rotation angles and either the field aperture for a certain isocenter position or the isocenter coordinates for a given field aperture are supplied. All of the already known exact solutions are reproduced. New expressions for the field aperture and for the isocenter coordinates, which were not previously available, are also computed. If tangential fields at a fixed source-to-skin distance are used together with a supraclavicular full-field, different apertures for each tangential field are required to achieve a correct match. If an isocentric technique for the tangential fields or a supraclavicular half-field is used, this complication is avoided. The breast technique with the supraclavicular half-field is recommended, because it presents several advantages with respect to the supraclavicular full-field. This formalism provides a useful tool in cases where matching of adjacent fields is necessary.


Asunto(s)
Algoritmos , Modelos Biológicos , Neoplasias/fisiopatología , Neoplasias/radioterapia , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Simulación por Computador , Humanos , Dosificación Radioterapéutica
17.
Phys Med Biol ; 55(11): 3077-86, 2010 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-20463376

RESUMEN

Monte Carlo simulation is the most accurate method for absorbed dose calculations in radiotherapy. Its efficiency still requires improvement for routine clinical applications, especially for online adaptive radiotherapy. In this paper, we report our recent development on a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport. We have implemented the dose planning method (DPM) Monte Carlo dose calculation package (Sempau et al 2000 Phys. Med. Biol. 45 2263-91) on the GPU architecture under the CUDA platform. The implementation has been tested with respect to the original sequential DPM code on the CPU in phantoms with water-lung-water or water-bone-water slab geometry. A 20 MeV mono-energetic electron point source or a 6 MV photon point source is used in our validation. The results demonstrate adequate accuracy of our GPU implementation for both electron and photon beams in the radiotherapy energy range. Speed-up factors of about 5.0-6.6 times have been observed, using an NVIDIA Tesla C1060 GPU card against a 2.27 GHz Intel Xeon CPU processor.


Asunto(s)
Radioterapia/métodos , Algoritmos , Huesos/efectos de la radiación , Simulación por Computador , Electrones , Humanos , Pulmón/efectos de la radiación , Modelos Estadísticos , Método de Montecarlo , Fantasmas de Imagen , Fotones , Programas Informáticos , Factores de Tiempo , Agua/química
18.
Phys Med Biol ; 54(20): 6151-63, 2009 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-19779217

RESUMEN

Three widely used Monte Carlo systems were benchmarked against recently published measurements of the angular distribution of 13 MeV and 20 MeV electrons scattered from foils of different atomic numbers and thicknesses. Source and geometry were simulated in detail to calculate electron fluence profiles 118.2 cm from the exit window. Results were compared to the measured fluence profiles and the characteristic angle where the fluence drops to 1/e of its maximum value. EGSnrc and PENELOPE results, on average, agreed with measurement within 1 standard deviation experimental uncertainty, with EGSnrc estimating slightly lower scatter than measurement and PENELOPE slightly higher scatter. Geant4.9.2 overestimated the characteristic angle for the lower atomic number foils by as much as 10%. Retuning of the scatter distributions in Geant4 led to a much better agreement with measurement, close to that achieved with the other codes. The 3% differences from measurement seen with all codes for at least some of the foils would result in clinically significant errors in the fluence profiles (2%/4 mm), given accurate knowledge of the electron source and treatment head geometry used in radiotherapy. Further improvement in simulation accuracy is needed to achieve 1%/1 mm agreement with measurement for the full range of beam energies, foil atomic number and thickness used in radiotherapy. EGSnrc would achieve this accuracy with an increase in thickness of the mylar sheets in the monitor chamber, PENELOPE with a decrease in thickness.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia/métodos , Algoritmos , Simulación por Computador , Electrones , Diseño de Equipo , Humanos , Método de Montecarlo , Distribución Normal , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Dispersión de Radiación , Programas Informáticos
19.
IEEE Trans Med Imaging ; 28(12): 1894-901, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19435677

RESUMEN

We have developed a general-purpose Monte Carlo simulation code, called penMesh, that combines the accuracy of the radiation transport physics subroutines from PENELOPE and the flexibility of a geometry based on triangle meshes. While the geometric models implemented in most general-purpose codes--such as PENELOPE's quadric geometry--impose some limitations in the shape of the objects that can be simulated, triangle meshes can be used to describe any free-form (arbitrary) object. Triangle meshes are extensively used in computer-aided design and computer graphics. We took advantage of the sophisticated tools already developed in these fields, such as an octree structure and an efficient ray-triangle intersection algorithm, to significantly accelerate the triangle mesh ray-tracing. A detailed description of the new simulation code and its ray-tracing algorithm is provided in this paper. Furthermore, we show how it can be readily used in medical imaging applications thanks to the detailed anatomical phantoms already available. In particular, we present a whole body radiography simulation using a triangulated version of the anthropomorphic NCAT phantom. An example simulation of scatter fraction measurements using a standardized abdomen and lumbar spine phantom, and a benchmark of the triangle mesh and quadric geometries in the ray-tracing of a mathematical breast model, are also presented to show some of the capabilities of penMesh.


Asunto(s)
Modelos Biológicos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Programas Informáticos , Imagen de Cuerpo Entero/métodos , Simulación por Computador , Análisis de Elementos Finitos , Humanos , Método de Montecarlo , Fantasmas de Imagen , Dosis de Radiación , Dispersión de Radiación , Validación de Programas de Computación , Imagen de Cuerpo Entero/instrumentación
20.
IEEE Trans Med Imaging ; 28(5): 696-702, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19272986

RESUMEN

We quantify the variation in resolution due to anisotropy caused by oblique X-ray incidence in indirect flat-panel detectors for computed tomography breast imaging systems. We consider a geometry and detector type utilized in breast computed tomography (CT) systems currently being developed. Our methods rely on mantis, a combined X-ray, electron, and optical Monte Carlo transport open source code. The physics models are the most accurate available in general-purpose Monte Carlo packages in the diagnostic energy range. We consider maximum-obliquity angles of 10 ( degrees ) and 13 ( degrees ) at the centers of the 30 and 40 cm detector edges, respectively, and 16 ( degrees ) at the corner of the detector. Our results indicate that blur is asymmetric and that the resolution properties vary significantly with the angle (or location) of incidence. Our results suggest that the asymmetry can be as high as a factor of 2.6 between orthogonal directions. Anisotropy maps predicted by mantis provide an understanding of the effect that such variations have on the imaging system and allow more accurate modeling and optimization of breast CT systems. These maps of anisotropy across the detector could lead to improved reconstruction and help motivate physics-based strategies for computer detection of breast lesions.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Mamografía/métodos , Tomografía Computarizada por Rayos X/métodos , Anisotropía , Cesio , Simulación por Computador , Femenino , Humanos , Yoduros , Método de Montecarlo , Distribución Normal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...