RESUMEN
In this tutorial mini-review, we explore the application of Design of Experiments (DOE) as a powerful statistical tool in biotechnology. Specifically, we review the optimization of hydrogel materials for diverse microbial applications related to green microbiology, the use of microbes to promote sustainability. Hydrogels, three-dimensional polymers networks with high water retention capabilities, are pivotal in the immobilization of microorganisms and provide a customizable environment essential for directing microbial fate. We focus on the application of DOE to precisely tailor hydrogel compositions for a range of fungi and bacteria either used for the sustainable production of chemical compounds, or the elimination of hazardous substances. We examine a variety of DOE design strategies such as central composite designs, Box-Behnken designs, and optimal designs, and discuss their strategic implementation across diverse hydrogel formulations. Our analysis explores the integral role of DOE in refining hydrogels derived from a spectrum of polymers, including natural and synthetic polymers. We illustrate how DOE facilitates nuanced control over hydrogel properties that cannot be achieved using a standard one factor at a time approach. Furthermore, this review reveals a conserved finding across different materials and applications: there are significant interactions between hydrogel parameters and cell behavior. This highlights the intricacies of cell-hydrogel interactions and the impact on hydrogel material properties and cellular functions. Lastly, this review not only highlights DOE's efficacy in streamlining the optimization of cell-hydrogel processes but also positions it as a critical tool in advancing our understanding of cell-hydrogel dynamics, potentially leading to innovative advancements in biotechnological applications and bioengineering solutions.
RESUMEN
Chlorinated aliphatic hydrocarbons (CAHs), such as cis-1,2-dichloroethylene (cDCE), are prevalent in groundwater at many locations throughout the United States. When immobilized in hydrogel beads with slow-release compounds, the bacteria strain Rhodococcus rhodochrous ATCC 21198 can be used for the in situ bioremediation of cDCE. These hydrogel beads must exhibit high mechanical strength and resist degradation to extend the lifetime of slow-release compounds and bioremediation. We engineered poly(vinyl)-alcohol - alginate (PVA-AG) beads to immobilize ATCC 21198 with the slow-release compound, tetrabutoxysilane (TBOS) that produces 1-butanol as a growth substrate, for high mechanical strength. We optimized three inputs (concentration of PVA, concentration of AG, and the crosslinking time) on two responses (compressive modulus and rate of oxygen utilization) for batch incubation experiments between 1 and 30 days using a design of experiments approach. The predictive models generated from design of experiments were then tested by measuring the compressive strength, oxygen utilization, and abiotic rates of hydrolysis for a predicted optimal bead formulation. The result of this study generated a hydrogel bead with immobilized R. rhodochrous ATCC 21198 and TBOS that exhibited a high compressive modulus on day 1 and day 30, which was accurately predicted by models. These hydrogel beads exhibited low metabolic activity based on oxygen rates on day 1 and day 30 but were not accurately predicted by the models. In addition, the ratio between oxygen utilization and abiotic rates of hydrolysis were observed to be roughly half of what was expected stoichiometrically. Lastly, we demonstrated the capability to use these beads as a bioremediation technology for cDCE as we found that, for all bead formulations, cDCE was significantly reduced after 30 days. Altogether, this work demonstrates the capability to capture and enhance the material properties of the complex hydrogel beads with predictive models yet signals the need for more robust methods to understand the metabolic activity that occurs in the hydrogel beads.
RESUMEN
Polycyclic aromatic hydrocarbons (PAHs) are prevalent environmental contaminants that are harmful to ecological and human health. Bioremediation is a promising technique for remediating PAHs in the environment, however bioremediation often results in the accumulation of toxic PAH metabolites. The objectives of this research were to demonstrate the cometabolic treatment of a mixture of PAHs by a pure bacterial culture, Rhodococcus rhodochrous ATCC 21198, and investigate PAH metabolites and toxicity. Additionally, the surfactant Tween ® 80 and cell immobilization techniques were used to enhance bioremediation. Total PAH removal ranged from 70-95% for fluorene, 44-89% for phenanthrene, 86-97% for anthracene, and 6.5-78% for pyrene. Maximum removal was achieved with immobilized cells in the presence of Tween ® 80. Investigation of PAH metabolites produced by 21198 revealed a complex mixture of hydroxylated compounds, quinones, and ring-fission products. Toxicity appeared to increase after bioremediation, manifesting as mortality and developmental effects in embryonic zebrafish. 21198's ability to rapidly transform PAHs of a variety of molecular structures and sizes suggests that 21198 can be a valuable microorganism for catalyzing PAH remediation. However, implementing further treatment processes to address toxic PAH metabolites should be pursued to help lower post-remediation toxicity in future studies.
Asunto(s)
Biodegradación Ambiental , Células Inmovilizadas , Hidrocarburos Policíclicos Aromáticos , Rhodococcus , Tensoactivos , Pez Cebra , Rhodococcus/metabolismo , Tensoactivos/toxicidad , Tensoactivos/química , Tensoactivos/metabolismo , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/química , Hidrocarburos Policíclicos Aromáticos/metabolismo , Animales , Células Inmovilizadas/metabolismo , Polisorbatos/toxicidad , Polisorbatos/química , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/química , Fenantrenos/toxicidad , Fenantrenos/metabolismo , Fenantrenos/química , Embrión no Mamífero/efectos de los fármacosRESUMEN
The degradation of the prevalent environmental contaminants benzene, toluene, ethylbenzene, and xylenes (BTEX) along with a common co-contaminant methyl tert-butyl ether (MTBE) by Rhodococcus rhodochrous ATCC Strain 21198 was investigated. The ability of 21198 to degrade these contaminants individually and in mixtures was evaluated with resting cells grown on isobutane, 1-butanol, and 2-butanol. Growth of 21198 in the presence of BTEX and MTBE was also studied to determine the growth substrate that best supports simultaneous microbial growth and contaminants degradation. Cells grown on isobutane, 1-butanol, and 2-butanol were all capable of degrading the contaminants, with isobutane grown cells exhibiting the most rapid degradation rates and 1-butanol grown cells exhibiting the slowest. However, in conditions where BTEX and MTBE were present during microbial growth, 1-butanol was determined to be an effective substrate for supporting concurrent growth and contaminant degradation. Contaminant degradation was found to be a combination of metabolic and cometabolic processes. Evidence for growth of 21198 on benzene and toluene is presented along with a possible transformation pathway. MTBE was cometabolically transformed to tertiary butyl alcohol, which was also observed to be transformed by 21198. This work demonstrates the possible utility of primary and secondary alcohols to support biodegradation of monoaromatic hydrocarbons and MTBE. Furthermore, the utility of 21198 for bioremediation applications has been expanded to include BTEX and MTBE.
Asunto(s)
Benceno , Éteres Metílicos , Benceno/metabolismo , Tolueno/metabolismo , Xilenos/metabolismo , 1-Butanol , Derivados del Benceno/metabolismo , Éteres Metílicos/metabolismo , Biodegradación AmbientalRESUMEN
The performance of two tropical plants, Rhynchospora corymbosa L. (RC) and Coix lacryma-jobi, L (CL) in treatment of primary sewage effluent in lab-scale vertical-flow constructed wetlands (VFCW) along with no plant control wetland was investigated. A batch-flow VFCWs were operated under batch fill and drain hydraulic loading system with hydraulic retention times (HRT) of 0.5, 1, and 2 days and fill rate of 8 L/day. Removal of solids, organics, nutrients, and pathogens were monitored. The volumetric contaminant removal rates were best described by 1st order kinetics except for ammonia and phosphate, which was best described by Stover-Kincannon kinetics. Influent TSS, PO43-, COD, BOD5, and total coliform concentration were low but high in NH4+ concentration. CL was better in nutrient removal as HRT increases compared to RC. RC was more efficient at TSS, turbidity, and organics removal. Pathogen removal was independent of plant type but HRT. Solids and organic removal were lower in CL planted CWs due to preferential flow paths created by their bulky root. CL planted CWs removed more nutrients followed by RC planted CWs and then no-plant control CWs. The results of these tests demonstrate that both CL and RC are suitable for the treatment of municipal wastewater in VFCW system.
Asunto(s)
Coix , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Humedales , Nitrógeno/análisis , Biodegradación Ambiental , PlantasRESUMEN
Polycyclic aromatic hydrocarbons (PAHs) are a class of environmental contaminants released into the environment from both natural and anthropogenic sources that are associated with carcinogenic, mutagenic, and teratogenic health effects. Many remediation strategies for the treatment of PAH contaminated material, including bioremediation, can lead to the formation of toxic transformation products. Analytical techniques for PAHs and PAH transformation products often require extensive sample preparation including solvent extraction and concentration, chromatographic separation, and mass spectrometry to identify and quantify compounds of interest. Excitation-emission matrix (EEM) fluorescent spectroscopy paired with parallel factor analysis (PARAFAC) is an approach for analyzing PAHs that eliminates the need for extensive sample preparation and separation techniques before analysis. However, this technique has rarely been applied to monitoring PAH biotransformation and formation of PAH metabolites. The objectives of this research were to compare an established targeted analytical method to two-dimensional fluorescent spectroscopy and combined EEM-PARAFAC methods to monitor phenanthrene degradation by a bacterial pure culture, Mycobacterium Strain ELW1, identify and quantify phenanthrene transformation products, and derive kinetic constants for phenanthrene degradation and metabolite formation. Both phenanthrene and its primary transformation product, trans-9,10-dihydroxy-9,10-dihydrophenanthrene, were identified and quantified with the EEM-PARAFAC method. The value of the EEM-PARAFAC method was demonstrated in the superiority of sensitivity and accuracy of quantification to two-dimensional fluorescent spectroscopy. Quantification of targets and derivation of kinetic constants using the EEM-PARAFAC method were validated with an established gas chromatography-mass spectrometry (GC-MS) method. To the authors' knowledge, this is the first study to use an EEM-PARAFAC method to monitor, identify, and quantify both PAH biodegradation and PAH metabolite formation by a bacterial pure culture.
Asunto(s)
Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Biodegradación Ambiental , Fenantrenos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Espectrometría de Fluorescencia/métodos , Análisis FactorialRESUMEN
A series of single-well push-pull tests (SWPPTs) were performed to investigate the efficacy of isobutane (2-methylpropane) as a primary substrate for in situ stimulation of microorganisms able to cometabolically transform common groundwater contaminants, such as chlorinated aliphatic hydrocarbons and 1,4-dioxane (1,4-D). In biostimulation tests, the disappearance of isobutane relative to a nonreactive bromide tracer indicated an isobutane-utilizing microbial community rapidly developed in the aquifer around the test well. SWPPTs were performed as natural drift tests with first-order rates of isobutane consumption ranging from 0.4 to 1.4 day-1. Because groundwater contaminants were not present at the demonstration site, isobutene (2-methylpropene) was used as a nontoxic surrogate to demonstrate cometabolic activity in the subsurface after biostimulation. The transformation of isobutene to isobutene epoxide (2-methyl-1,2-epoxypropane) illustrates the epoxidation process previously shown for common groundwater contaminants after cometabolic transformation by alkane-utilizing bacteria. The rate and extent of isobutene consumption and the formation and transformation of isobutene epoxide were greater in the presence of isobutane, with no evidence of primary substrate inhibition. Modeled concentrations of isobutane-utilizing biomass in microcosms constructed with groundwater collected before and after each SWPPT offered additional evidence that the isobutane-utilizing microbial community was stimulated in the aquifer. Experiments in groundwater microcosms also demonstrated that the isobutane-utilizing bacteria stimulated in the subsurface could cometabolically transform a mixture of co-substrates including isobutene, 1,1-dichloroethene, cis-1,2-dichloroethene, and 1,4-D with the same co-substrate preferences as the bacterium Rhodococcus rhodochrous ATCC strain 21198 after growth on isobutane. This study demonstrated the effectiveness of isobutane as primary substrate for stimulating in situ cometabolic activity and the use of isobutene as surrogate to investigate in situ cometabolic reactions catalyzed by isobutane-stimulated bacteria.
Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Biodegradación Ambiental , Biotransformación , Butanos , Compuestos Epoxi , Contaminantes Químicos del Agua/metabolismoRESUMEN
Long-term cometabolic transformation of 1,1,1-trichlorethane (1,1,1-TCA) and 1,4-dioxane (1,4-D) was achieved using slow release compounds (SRCs) as growth substrates for pure cultures of Rhodococcus rhodochrous ATCC 21198 (ATCC strain 21198). Resting cell transformation tests showed 1,4-D transformation occurred without a lag phase for cells grown on 2-butanol, while an induction period of several hours was required for 1-butanol grown cells. These observations were consistent with activity-based labeling patterns for monooxygenase hydroxylase components and specific rates of tetrahydrofuran (THF) degradation. 1,1,1-TCA and 1,4-D degradation rates for alcohol-grown cells were slower than those for cells grown on gaseous alkanes such as isobutane. Batch metabolism and degradation tests were performed, in the presence of 1,1,1-TCA and 1,4-D, with the growth of ATCC strain 21198 on alcohols produced by the hydrolysis of orthosilicates. Three orthosilicates were tested: tetrabutylorthosilicate (TBOS), tetra-s-butylorthosilicate (T2BOS), and tetraisopropoxysilane (T2POS). The measured rates of alcohol release in poisoned controls depended on the orthosilicate structure with TBOS, which produced a 1° alcohol (1-butanol), hydrolyzing more rapidly than T2POS and T2BOS, that produced the 2° alcohols 2-butanol and 2-propanol, respectively. The orthosilicates were added as light non-aqueous phase liquids (LNAPLs) with ATCC strain 21198 and formed dispersed droplets when continuously mixed. Continuous rates of oxygen (O2) consumption and carbon dioxide (CO2) production confirmed alcohol metabolism by ATCC strain 21198 was occurring. The rates of metabolism (TBOS > T2POS > T2BOS) were consistent with the rates of alcohol release via abiotic hydrolysis. 1,4-D and 1,1,1-TCA were continuously transformed in successive additions by ATCC strain 21198 over 125 days, with the rates highly correlated with the rates of metabolism. The metabolism of the alcohols was not inhibited by acetylene, while transformation of 1,4-D and 1,1,1-TCA was inhibited by this gas. As acetylene is a potent inactivator of diverse bacterial monooxygenases, these results suggest that monooxygenase activity was required for the observed cometabolic transformations but not for alcohol utilization. Alcohol concentrations in the biologically active reactors were maintained below the levels of detection, indicating they were metabolized rapidly after being produced. Much lower rates of O2 consumption were observed in the reactors containing T2BOS, which has benefits for in-situ bioremediation. The results illustrate the importance of the structure of the SRC when developing passive aerobic cometabolic treatment systems.
Asunto(s)
Alcoholes , Tricloroetanos , Biodegradación Ambiental , Dioxanos , RhodococcusRESUMEN
Rhodococcus rhodochrous ATCC 21198 (strain ATCC 21198) was successfully co-encapsulated in gellan gum beads with orthosilicates as slow release compounds (SRCs) to support aerobic cometabolism of a mixture of 1,1,1-trichloroethane (1,1,1-TCA), cis-1,2-dichloroethene (cis-DCE), and 1,4-dioxane (1,4-D) at aqueous concentrations ranging from 250 to 1000 µg L-1. Oxygen (O2) consumption and carbon dioxide (CO2) production showed the co-encapsulated cells utilized the alcohols that were released from the co-encapsulated SRCs. Two model SRCs, tetrabutylorthosilicate (TBOS) and tetra-s-butylorthosilicate (T2BOS), which hydrolyze to produce 1- and 2-butanol, respectively, were encapsulated in gellan gum (GG) at mass loadings as high as 10% (w/w), along with strain ATCC 21198. In the GG encapsulated beads, TBOS hydrolyzed 26 times faster than T2BOS and rates were â¼4 times higher in suspension than when encapsulated. In biologically active reactors, the co-encapsulated strain ATCC 21198 effectively utilized the SRC hydrolysis products (1- and 2-butanol) and cometabolized repeated additions of a mixture of 1,1,1-TCA, cis-DCE, and 1,4-D for over 300 days. The transformation followed pseudo-first-order kinetics. Vinyl chloride (VC) and 1,1-dichloroethene (1,1-DCE) were also transformed in the reactors after 250 days. In the long-term treatment, the batch reactors with co-encapsulated T2BOS GG beads achieved similar transformation rates, but at much lower O2 consumption rates than those with TBOS. The results demonstrate that the co-encapsulation technology can be a passive method for the cometabolic treatment of dilute groundwater plumes.
Asunto(s)
Rhodococcus , Biodegradación Ambiental , Dicloroetilenos , Dioxanos , Polisacáridos Bacterianos , Rhodococcus/química , TricloroetanosRESUMEN
Aerobic cometabolism of the emerging contaminant 1,4-dioxane (1,4-D) by isobutane-utilizing microorganisms was assessed in pure culture and aquifer microcosm studies. The bacterium Rhodococcus rhodochrous strain ATCC 21198 transformed low, environmentally-relevant concentrations of 1,4-D when grown on isobutane. Microcosms were constructed with aquifer solids from Fort Carson, Colorado, a site contaminated with 1,4-D and trichloroethene (TCE). Multiple additions of isobutane and 1,4-D over 300â¯days were transformed in microcosms biostimulated with isobutane and microcosms bioaugmented with strain 21198. Results showed that, over time and with sufficient inorganic nutrients, biostimulation of native microorganisms with isobutane was just as effective as bioaugmentation with strain 21198 to achieve 1,4-D transformation in the microcosms. The presence of TCE at 0.2â¯mg/L did not inhibit 1,4-D transformation, though TCE itself was not readily transformed. An iterative process was used to determine kinetic parameter values to fit Michaelis-Menten/Monod models to experimental data for simultaneous isobutane utilization, biomass growth, and cometabolic transformation of 1,4-D. Parameter optimization resulted in good model fit to the data over multiple transformations of isobutane and 1,4-D in both short- and long-term experiments. Results suggest low concentrations of 1,4-D studied in the microcosms were cometabolically transformed according to a pseudo first-order rate of 0.37â¯L/mg TSS/day of 21198. Isobutane consumption was modeled with a maximum rate of 2.58â¯mg/mg TSS/day and a half saturation constant of 0.09â¯mg/L. 1,4-D transformation was competitively inhibited by the presence of isobutane and transformation rates were significantly reduced when inorganic nutrients were limiting. Simulations of the repeated additions found a first-order microbial endogenous decay coefficient of 0.03â¯day-1 fit the alternating periods of active transformation and stagnation between isobutane and 1,4-D additions over approximately one year. The model fitting process highlighted the importance of determining kinetic parameters from data representing low concentrations typically found in the environment.
Asunto(s)
Butanos/metabolismo , Dioxanos/metabolismo , Agua Subterránea/microbiología , Rhodococcus/metabolismo , Microbiología del Agua , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Colorado , Ecosistema , Agua Subterránea/química , Contaminantes Químicos del Agua/análisisRESUMEN
Ethene (ETH)-grown inocula of Nocardioides JS614 grow on vinyl chloride (VC), vinyl fluoride (VF), or vinyl bromide (VB) as the sole carbon and energy source, with faster growth rates and higher cell yields on VC and VF than on VB. However, whereas acetate-grown inocula of JS614 grow on VC and VF after a lag period, growth on VB did not occur unless supplemental ethene oxide (EtO) was present in the medium. Despite inferior growth on VB, the maximum rate of VB consumption by ETH-grown cells was ~ 50% greater than the rates of VC and VF consumption, but Br- release during VB consumption was non-stoichiometric with VB consumption (~ 66%) compared to 100% release of Cl- and F- during VC and VF consumption. Evidence was obtained for VB turnover-dependent toxicity of cell metabolism in JS614 with both acetate-dependent respiration and growth being significantly reduced by VB turnover, but no VC or VF turnover-dependent toxicity of growth was detected. Reduced growth rate and cell yield of JS614 on VB probably resulted from a combination of inefficient metabolic processing of the highly unstable VB epoxide (t0.5 = 45 s), accompanied by growth inhibitory effects of VB metabolites on acetate-dependent metabolism. The exact role(s) of EtO in promoting growth of alkene repressed JS614 on VB remains unresolved, with evidence of EtO inducing epoxide consuming activity prior to an increase in alkene oxidizing activity and supplementing reductant supply when VB is the growth substrate.
Asunto(s)
Actinobacteria/crecimiento & desarrollo , Actinobacteria/metabolismo , Cloruro de Vinilo/metabolismo , Compuestos de Vinilo/metabolismo , Carbono/metabolismo , Metabolismo EnergéticoRESUMEN
Due to the natural gas boom in North America, there is renewed interest in the production of other chemical products from methane. We investigated the feasibility of immobilizing the obligate methanotrophic bacterium Methylosinus trichosporium OB3b in alginate beads, and selectively inactivating methanol dehydrogenase (MDH) with cyclopropane to produce methanol. In batch cultures and in semi-continuous flow columns, the exposure of alginate-immobilized cells to cyclopropane or cyclopropanol resulted in the loss of the majority of MDH activity (> 80%), allowing methanol to accumulate to significant concentrations while retaining all of M. trichosporium OB3b's methane monooxygenase capacity. Thereafter, the efficiency of methanol production fell due to recovery of most of the MDH activity; however, subsequent inhibition periods resulted in renewed methanol production efficiency, and immobilized cells retained methane-oxidizing activity for at least 14 days.
Asunto(s)
Biomasa , Células Inmovilizadas/microbiología , Metano/metabolismo , Metanol/metabolismo , Methylosinus trichosporium/metabolismo , Oxigenasas/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Alginatos/metabolismo , Técnicas de Cultivo Celular por Lotes , Éteres Cíclicos/metabolismo , Fermentación , Microbiología IndustrialRESUMEN
The simultaneous anaerobic transformation of tetrachloroethene (PCE) and carbon tetrachloride (CT) was evaluated in a continuous flow column. The column was packed with quartz sand and bioaugmented with the Evanite culture (EV) that is capable of transforming PCE to ethene. Azizian and Semprini (2016) reported that PCE and CT could be simultaneously transformed in the column, with PCE (0.1mM) transformed mainly to ethene and CT (0.015mM) to chloroform (CF) (20%) and an unknown transformation product, likely carbon dioxide (CO2). The fermentation of propionate, formed from lactate fermentation, was inhibited after the transformation of CT, likely from the exposure to CF. Reported here is the second phase of that study where a second bioaugmentation of the EV culture was made to reintroduce a lactate and propionate fermenting population to the column. Effective lactate and propionate fermentation were restored with a H2 concentration of ~25nM maintained in the column effluent. PCE (0.1mM) was effectively transformed to ethene (~98%) and vinyl chloride (VC) (~2%). Unlabeled CT (0.015 to 0.03mM) was completely transformed with a transient build-up of CF and chloromethane (CM), which were subsequently removed below their detection limits. A series of transient tests were initiated through the addition of carbon-13 labeled CT (13CT), with concentrations gradually increased from 0.03 to 0.10mM. GC-MS analysis of the column effluent showed that 13C labeled CO2 (13CO2) was formed, ranging from 82 to 93% of the 13CT transformed, with the transient increases in 13CO2 associated with the increased concentration of 13CT. A modified COD analysis indicated a lesser amount of 13CT (18%) was transformed to soluble products, while 13CO2 represented 82% the 13CT transformed. In a final transient test, the influent lactate concentration was decreased from 1.1 to 0.67mM. The transformation of both CT and PCE changed dramatically. Only 59% of the 13CT was transformed, primarily to CF. 13CO2 concentrations gradually decreased to background levels, indicating CO2 was no longer a transformation product. PCE transformation resulted in the following percentage of products formed: cDCE (60%), VC (36%), and ethene (4%). Incomplete propionate fermentation was also observed, consistent with the build-up of CF and the decrease in H2 concentrations to approximately 2nM. The results clearly demonstrate that high concentrations of CT were transformed to CO2, and effective PCE dehalogenation to ethene was maintained when excess lactate was fed and propionate was effectively fermented. However, when the lactate concentration was reduced, both PCE and CT transformation and propionate fermentation were negatively impacted.
Asunto(s)
Dióxido de Carbono/metabolismo , Tetracloruro de Carbono/metabolismo , Etilenos/metabolismo , Tetracloroetileno/metabolismo , Anaerobiosis , Biodegradación Ambiental , Reactores Biológicos/microbiología , Dióxido de Carbono/química , Isótopos de Carbono/análisis , Tetracloruro de Carbono/química , Cloroformo/química , Cloroformo/metabolismo , Etilenos/química , Halogenación , Tetracloroetileno/química , Cloruro de Vinilo/química , Cloruro de Vinilo/metabolismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismoRESUMEN
Mycobacterium sp. ELW1 co-metabolically degraded up to 1.8 µmol of phenanthrene (PHE) in â¼48 h, and hydroxyphenanthrene (OHPHE) metabolites, including 1-hydroxyphenanthrene (1-OHPHE), 3-hydroxyphenanthrene (3-OHPHE), 4-hydroxyphenanthrene (4-OHPHE), 9-hydroxyphenanthrene (9-OHPHE), 9,10-dihydroxyphenanthrene (1,9-OHPHE), and trans-9,10-dihydroxy-9,10-dihydrophenanthrene (trans-9,10-OHPHE), were identified and quantified over time. The monooxygenase responsible for co-metabolic transformation of PHE was inhibited by 1-octyne. First-order PHE transformation rates, kPHE, and half-lives, t1/2, for PHE-exposed cells were 0.16-0.51 h-1 and 1.4-4.3 h, respectively, and the 1-octyne controls ranged from 0.015-0.10 h-1 to 7.0-47 h, respectively. While single compound standards of PHE and trans-9,10-OHPHE, the major OHPHE metabolite formed by ELW1, were not toxic to embryonic zebrafish (Danio rerio), single compound standards of minor OHPHE metabolites, 1-OHPHE, 3-OHPHE, 4-OHPHE, 9-OHPHE, and 1,9-OHPHE, were toxic, with effective concentrations (EC50's) ranging from 0.5 to 5.5 µM. The metabolite mixtures formed by ELW1, and the reconstructed standard mixtures of the identified OHPHE metabolites, elicited a toxic response in zebrafish for the same three time points. EC50s for the metabolite mixtures formed by ELW1 were lower (more toxic) than those for the reconstructed standard mixtures of the identified OHPHE metabolites. Ten unidentified hydroxy PHE metabolites were measured in the derivatized mixtures formed by ELW1 and may explain the increased toxicity of the ELW1 metabolites mixture relative to the reconstructed standard mixtures of the identified OHPHE metabolites.
Asunto(s)
Mycobacterium , Fenantrenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Fenantrenos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Pez CebraRESUMEN
Carbon tetrachloride (CT) and chloroform (CF) were transformed in batch reactor experiments conducted with anaerobic dechlorinating cultures and supernatant (ADC + S) harvested from continuous flow reactors. The Evanite (EV) and Victoria/Stanford (VS) cultures, capable of respiring trichloroethene (TCE), 1,2-cis-dichloroethene (cDCE), and vinyl chloride (VC) to ethene (ETH), were grown in continuous flow reactors receiving an influent feed of saturated TCE (10 mM; 60 mEq) and formate (45 mM; 90 mEq) but no CT or CF. Cells and supernatant were harvested from the chemostats and inoculated into batch reactors at the onset of each experiment. CT transformation was complete following first order kinetics with CF, DCM and CS2 as the measurable transformation products, representing 20-40% of the original mass of CT, with CO2 likely the unknown transformation product. CF was transformed to DCM and likely CO2 at an order of magnitude rate lower than CT, while DCM was not further transformed. An analytical first order model including multiple key reactions effectively simulated CT transformation, product formation and transformation, and provided reasonable estimates of transformation rate coefficients. Biotic and abiotic treatments indicated that CT was mainly transformed via abiotic processes. However, the presence of live cells was associated with the transformation of CF to DCM. In biotic tests both TCE and CT were simultaneously transformed, with TCE transformed to ETH and approximately 15-53% less CF formed via CT transformation. A 14-day exposure to CF (CFmax = 1.4 µM) reduced all rates of chlorinated ethene respiration by a factor of 10 or greater.
Asunto(s)
Bacterias Anaerobias/metabolismo , Tetracloruro de Carbono/metabolismo , Cloroformo/metabolismo , Halogenación , Tricloroetileno/metabolismo , Biodegradación Ambiental , Reactores Biológicos , Etilenos , Formiatos , Cinética , Frecuencia Respiratoria , Cloruro de ViniloRESUMEN
In anoxic groundwater aquifers, the long-term survival of Dehalococcoides mccartyi populations expressing the gene vcrA (or bvcA) encoding reductive vinyl chloride dehalogenases are important to achieve complete dechlorination of tetrachloroethene (PCE) and trichloroethene (TCE) to nonchlorinated ethene. The absence or inactivity of vcrA-containing Dehalococcoides results in the accumulation of the harmful chlorinated intermediates dichloroethene (DCE) and vinyl chloride (VC). Although vcrA-containing Dehalococcoides subpopulations depend on synergistic interaction with other organohalide-respiring populations generating their metabolic electron acceptors (DCE and VC), their survival requires successful competition for electron donor within the entire organohalide-respiring microbial community. To understand this dualism of synergy and competition under growth conditions relevant in contaminated aquifers, we investigated Dehalococcoides-level population structure when subjected to a change in the ratio of electron donor to chlorinated electron acceptor in continuously stirred tank reactors (CSTRs) operated over 7 years. When the electron donor formate was supplied in stoichiometric excess to TCE, both tceA-containing and vcrA-containing Dehalococcoides populations persisted, and near-complete dechlorination to ethene was stably maintained. When the electron donor formate was supplied at substoichiometric concentrations, the interactions between tceA-containing and vcrA-containing populations shifted toward direct competition for the same limiting catabolic electron donor substrate with subsequent niche exclusion of the vcrA-containing population. After more than 2000 days of operation under electron donor limitation, increasing the electron donor to TCE ratio facilitated a recovery of the vcrA-containing Dehalococoides population to its original frequency. We demonstrate that electron donor scarcity alone, in the absence of competing metabolic processes or inhibitory dechlorination intermediate products, is sufficient to alter the Dehalococcoides population structure. These results underscore the importance of electron donor and chloroethene stoichiometry in maintaining balanced functional performance within consortia composed of multiple D. mccartyi subpopulations, even when other competing electron acceptor processes are absent.
Asunto(s)
Electrones , Cloruro de Vinilo/metabolismo , Biodegradación Ambiental , Chloroflexi/metabolismo , Tricloroetileno/metabolismoRESUMEN
Tetrachloroethene (PCE) and carbon tetrachloride (CT) were simultaneously transformed in a packed column that was bioaugmented with the Evanite culture (EV). The data presented here have been obtained over a period of 1930days. Initially the column was continuously fed synthetic groundwater with PCE (0.1mM), sulfate (SO4(2-)) (0.2mM) and formate (2.1mM) or lactate (1.1mM), but not CT. In these early stages of the study the effluent H2 concentrations ranged from 7 to 19nM, and PCE was transformed to ethene (ETH) (81 to 85%) and vinyl chloride (VC) (11 to 17%), and SO4(2-) was completely reduced when using either lactate or formate as electron donors. SO4(2-) reduction occurred concurrently with cis-DCE and VC dehalogenation. Formate was a more effective substrate for promoting dehalogenation based on electron donor utilization efficiency. Simultaneous PCE and CT tests found CT (0.015mM) was completely transformed with 20% observed as chloroform (CF) and trace amounts of chloromethane (CM) and dichloromethane (DCM), but no methane (CH4) or carbon disulfide (CS2). PCE transformation to ETH improved with CT addition in response to increases in H2 concentrations to 160nM that resulted from acetate formation being inhibited by either CT or CF. Lactate fermentation was negatively impacted after CT transformation tests, with propionate accumulating, and H2 concentrations being reduced to below 1nM. Under these conditions both SO4(2-) reduction and dehalogenation were negatively impacted, with sulfate reduction not occurring and PCE being transformed to cis-dichloroethene (c-DCE) (52%) and VC (41%). Upon switching to formate, H2 concentrations increased to 40nM, and complete SO4(2-) reduction was achieved, while PCE was transformed to ETH (98%) and VC (1%), with no acetate detected. Throughout the study PCE dehalogenation to ethene was positively correlated with the effluent H2 concentrations.
Asunto(s)
Tetracloruro de Carbono/metabolismo , Agua Subterránea/química , Tetracloroetileno/metabolismo , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos , Acetatos/metabolismo , Anaerobiosis , Biodegradación Ambiental , Cloroformo/metabolismo , Etilenos/metabolismo , Formiatos/química , Halogenación , Metano/metabolismo , Consorcios Microbianos , Oxidación-Reducción , Cloruro de Vinilo/metabolismoRESUMEN
Biofilms of the ammonia oxidizing bacterium Nitrosomonas europaea were cultivated to study microbial processes associated with ammonia oxidation in pure culture. We explored the hypothesis that the kinetic parameters of ammonia oxidation in N. europaea biofilms were in the range of those determined with batch suspended cells. Oxygen and pH microelectrodes were used to measure dissolved oxygen (DO) concentrations and pH above and inside biofilms and reactive transport modeling was performed to simulate the measured DO and pH profiles. A two dimensional (2-D) model was used to simulate advection parallel to the biofilm surface and diffusion through the overlying fluid while reaction and diffusion were simulated in the biofilm. Three experimental studies of microsensor measurements were performed with biofilms: i) NH3 concentrations near the Ksn value of 40 µM determined in suspended cell tests ii) Limited buffering capacity which resulted in a pH gradient within the biofilms and iii) NH3 concentrations well below the Ksn value. Very good fits to the DO concentration profiles both in the fluid above and in the biofilms were achieved using the 2-D model. The modeling study revealed that the half-saturation coefficient for NH3 in N. europaea biofilms was close to the value measured in suspended cells. However, the third study of biofilms with low availability of NH3 deviated from the model prediction. The model also predicted shifts in the DO profiles and the gradient in pH that resulted for the case of limited buffering capacity. The results illustrate the importance of incorporating both key transport and chemical processes in a biofilm reactive transport model.
Asunto(s)
Amoníaco/metabolismo , Biopelículas/crecimiento & desarrollo , Nitrosomonas europaea/fisiología , Medios de Cultivo/química , Concentración de Iones de Hidrógeno , Modelos Estadísticos , Nitrosomonas europaea/crecimiento & desarrollo , Nitrosomonas europaea/metabolismo , Oxidación-Reducción , Oxígeno/análisisRESUMEN
This study investigated the influence of water hardness (Mg2+ and Ca2+) on the fate and toxicity of 20 nm citrate silver nanoparticles (AgNPs) and Ag+ toward Nitrosomonas europaea, a model ammonia-oxidizing bacterium. Nitrification inhibition of N. europaea by 1 ppm AgNPs and 0.5 ppm Ag+ was reduced from 80% and 83%, respectively, in the absence of Mg2+ to 2% and 33%, respectively, in the presence of 730 µM Mg2+. Introduction of Mg2+ resulted in the rapid aggregation of the AgNP suspensions and reduced the 3 h Ag+ dissolution rates from 30%, in the absence of Mg2+, to 9%, in the presence of 730 µM Mg2+. Reduced AgNP dissolution rates resulted in decreased concentrations of silver that were found adsorbed to N. europaea cells. Increasing AgNP concentrations in the presence of Mg2+ increased the observed inhibition of nitrification, but was always less than what was observed in the absence of Mg2+. The presence of Mg2+ also reduced the adsorption of Ag+ to cells, possibly due to multiple mechanisms, including a reduction in the negative surface charge of the N. europaea membrane and a competition between Mg2+ and Ag+ for membrane binding sites and transport into the cells. Ca2+ demonstrated similar protection mechanisms, as Ag+ toxicity was reduced and AgNP suspensions aggregated and decreased their dissolution rates. These results indicate that the toxicity of Ag+ and AgNPs to nitrifying bacteria in wastewater treatment would be less pronounced in systems with hard water.
RESUMEN
Idiosyncratic combinations of reductive dehalogenase (rdh) genes are a distinguishing genomic feature of closely related organohalogen-respiring bacteria. This feature can be used to deconvolute the population structure of organohalogen-respiring bacteria in complex environments and to identify relevant subpopulations, which is important for tracking interspecies dynamics needed for successful site remediation. Here we report the development of a nanoliter qPCR platform to identify organohalogen-respiring bacteria and populations by quantifying major orthologous reductive dehalogenase gene groups. The qPCR assays can be operated in parallel within a 5184-well nanoliter qPCR (nL-qPCR) chip at a single annealing temperature and buffer condition. We developed a robust bioinformatics approach to select from thousands of computationally proposed primer pairs those that are specific to individual rdh gene groups and compatible with a single amplification condition. We validated hundreds of the most selective qPCR assays and examined their performance in a trichloroethene-degrading bioreactor, revealing population structures as well as their unexpected shifts in abundance and community dynamics.