Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36676218

RESUMEN

Non-contact mapping of magnetic fields produced by the human heart muscle requires the application of arrays of miniature and highly sensitive magnetic field sensors. In this article, we describe a MEMS technology of laminated magnetoelectric heterostructures comprising a thin piezoelectric lithium niobate single crystal and a film of magnetostrictive metglas. In the former, a ferroelectric bidomain structure is created using a technique developed by the authors. A cantilever is formed by microblasting inside the lithium niobate crystal. Metglas layers are deposited by magnetron sputtering. The quality of the metglas layers was assessed by XPS depth profiling and TEM. Detailed measurements of the magnetoelectric effect in the quasistatic and dynamic modes were performed. The magnetoelectric coefficient |α32| reaches a value of 492 V/(cm·Oe) at bending resonance. The quality factor of the structure was Q = 520. The average phase amounted to 93.4° ± 2.7° for the magnetic field amplitude ranging from 12 to 100 pT. An AC magnetic field detection limit of 12 pT at a resonance frequency of 3065 Hz was achieved which exceeds by a factor of 5 the best value for magnetoelectric MEMS lead-free composites reported in the literature. The noise level of the magnetoelectric signal was 0.47 µV/Hz1/2. Ways to improve the sensitivity of the developed sensors to the magnetic field for biomedical applications are indicated.

2.
Materials (Basel) ; 13(3)2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31973191

RESUMEN

Plasma treatment is one of the most promising tools to control surface properties of materials tailored for biomedical application. Among a variety of processing conditions, such as the nature of the working gas and time of treatment, discharge type is rarely studied, because it is mainly fixed by equipment used. This study aimed to investigate the effect of discharge type (direct vs. alternated current) using air as the working gas on plasma treatment of poly(ethylene terephthalate) films, in terms of their surface chemical structure, morphology and properties using X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and contact angle measurements. The effect of the observed changes in terms of subsequent chitosan immobilization on plasma-treated films was also evaluated. The ability of native, plasma-treated and chitosan-coated films to support adhesion and growth of mesenchymal stem cells was studied to determine the practicability of this approach for the biomedical application of poly(ethylene terephthalate) films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...