Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 180: 106079, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36918046

RESUMEN

Dysregulated cortical expression of the neural cell adhesion molecule (NCAM) and deficits of its associated polysialic acid (polySia) have been found in Alzheimer's disease and schizophrenia. However, the functional role of polySia in cortical synaptic plasticity remains poorly understood. Here, we show that acute enzymatic removal of polySia in medial prefrontal cortex (mPFC) slices leads to increased transmission mediated by the GluN1/GluN2B subtype of N-methyl-d-aspartate receptors (NMDARs), increased NMDAR-mediated extrasynaptic tonic currents, and impaired long-term potentiation (LTP). The latter could be fully rescued by pharmacological suppression of GluN1/GluN2B receptors, or by application of short soluble polySia fragments that inhibited opening of GluN1/GluN2B channels. These treatments and augmentation of synaptic NMDARs with the glycine transporter type 1 (GlyT1) inhibitor sarcosine also restored LTP in mice deficient in polysialyltransferase ST8SIA4. Furthermore, the impaired performance of polySia-deficient mice and two models of Alzheimer's disease in the mPFC-dependent cognitive tasks could be rescued by intranasal administration of polySia fragments. Our data demonstrate the essential role of polySia-NCAM in the balancing of signaling through synaptic/extrasynaptic NMDARs in mPFC and highlight the therapeutic potential of short polySia fragments to restrain GluN1/GluN2B-mediated signaling.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Ácidos Siálicos/metabolismo , Cognición , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Receptores de N-Metil-D-Aspartato
2.
Cell Mol Life Sci ; 80(4): 82, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36871239

RESUMEN

Neurotrypsin (NT) is a neuronal trypsin-like serine protease whose mutations cause severe mental retardation in humans. NT is activated in vitro by Hebbian-like conjunction of pre- and postsynaptic activities, which promotes the formation of dendritic filopodia via proteolytic cleavage of the proteoglycan agrin. Here, we investigated the functional importance of this mechanism for synaptic plasticity, learning, and extinction of memory. We report that juvenile neurotrypsin-deficient (NT-/-) mice exhibit impaired long-term potentiation induced by a spaced stimulation protocol designed to probe the generation of new filopodia and their conversion into functional synapses. Behaviorally, juvenile NT-/- mice show impaired contextual fear memory and have a sociability deficit. The latter persists in aged NT-/- mice, which, unlike juvenile mice, show normal recall but impaired extinction of contextual fear memories. Structurally, juvenile mutants exhibit reduced spine density in the CA1 region, fewer thin spines, and no modulation in the density of dendritic spines following fear conditioning and extinction in contrast to wild-type littermates. The head width of thin spines is reduced in both juvenile and aged NT-/- mice. In vivo delivery of adeno-associated virus expressing an NT-generated fragment of agrin, agrin-22, but not a shorter agrin-15, elevates the spine density in NT-/- mice. Moreover, agrin-22 co-aggregates with pre- and postsynaptic markers and increases the density and size of presynaptic boutons and presynaptic puncta, corroborating the view that agrin-22 supports the synaptic growth.


Asunto(s)
Potenciación a Largo Plazo , Péptido Hidrolasas , Humanos , Animales , Ratones , Anciano , Agrina , Espinas Dendríticas , Trastornos de la Memoria
3.
Cells ; 12(5)2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36899880

RESUMEN

Our previous studies demonstrated that enzymatic removal of highly sulfated heparan sulfates with heparinase 1 impaired axonal excitability and reduced expression of ankyrin G at the axon initial segments in the CA1 region of the hippocampus ex vivo, impaired context discrimination in vivo, and increased Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity in vitro. Here, we show that in vivo delivery of heparinase 1 in the CA1 region of the hippocampus elevated autophosphorylation of CaMKII 24 h after injection in mice. Patch clamp recording in CA1 neurons revealed no significant heparinase effects on the amplitude or frequency of miniature excitatory and inhibitory postsynaptic currents, while the threshold for action potential generation was increased and fewer spikes were generated in response to current injection. Delivery of heparinase on the next day after contextual fear conditioning induced context overgeneralization 24 h after injection. Co-administration of heparinase with the CaMKII inhibitor (autocamtide-2-related inhibitory peptide) rescued neuronal excitability and expression of ankyrin G at the axon initial segment. It also restored context discrimination, suggesting the key role of CaMKII in neuronal signaling downstream of heparan sulfate proteoglycans and highlighting a link between impaired CA1 pyramidal cell excitability and context generalization during recall of contextual memories.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Heparitina Sulfato , Animales , Ratones , Ancirinas/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Liasa de Heparina/metabolismo , Liasa de Heparina/farmacología , Heparitina Sulfato/metabolismo , Hipocampo/metabolismo
4.
Nat Commun ; 12(1): 6045, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663792

RESUMEN

The retrosplenial cortex (RSC) has diverse functional inputs and is engaged by various sensory, spatial, and associative learning tasks. We examine how multiple functional aspects are integrated on the single-cell level in the RSC and how the encoding of task-related parameters changes across learning. Using a visuospatial context discrimination paradigm and two-photon calcium imaging in behaving mice, a large proportion of dysgranular RSC neurons was found to encode multiple task-related dimensions while forming context-value associations across learning. During reversal learning requiring increased cognitive flexibility, we revealed an increased proportion of multidimensional encoding neurons that showed higher decoding accuracy for behaviorally relevant context-value associations. Chemogenetic inactivation of RSC led to decreased behavioral context discrimination during learning phases in which context-value associations were formed, while recall of previously formed associations remained intact. RSC inactivation resulted in a persistent positive behavioral bias in valuing contexts, indicating a role for the RSC in context-value updating.


Asunto(s)
Condicionamiento Clásico/fisiología , Giro del Cíngulo/fisiología , Neuronas/fisiología , Animales , Conducta Animal/fisiología , Corteza Cerebral/fisiología , Aprendizaje/fisiología , Masculino , Recuerdo Mental , Ratones , Ratones Endogámicos C57BL
5.
J Clin Invest ; 131(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33141761

RESUMEN

Matrix metalloproteinases (MMPs) are synthesized by neurons and glia and released into the extracellular space, where they act as modulators of neuroplasticity and neuroinflammatory agents. Development of epilepsy (epileptogenesis) is associated with increased expression of MMPs, and therefore, they may represent potential therapeutic drug targets. Using quantitative PCR (qPCR) and immunohistochemistry, we studied the expression of MMPs and their endogenous inhibitors tissue inhibitors of metalloproteinases (TIMPs) in patients with status epilepticus (SE) or temporal lobe epilepsy (TLE) and in a rat TLE model. Furthermore, we tested the MMP2/9 inhibitor IPR-179 in the rapid-kindling rat model and in the intrahippocampal kainic acid mouse model. In both human and experimental epilepsy, MMP and TIMP expression were persistently dysregulated in the hippocampus compared with in controls. IPR-179 treatment reduced seizure severity in the rapid-kindling model and reduced the number of spontaneous seizures in the kainic acid model (during and up to 7 weeks after delivery) without side effects while improving cognitive behavior. Moreover, our data suggest that IPR-179 prevented an MMP2/9-dependent switch-off normally restraining network excitability during the activity period. Since increased MMP expression is a prominent hallmark of the human epileptogenic brain and the MMP inhibitor IPR-179 exhibits antiseizure and antiepileptogenic effects in rodent epilepsy models and attenuates seizure-induced cognitive decline, it deserves further investigation in clinical trials.


Asunto(s)
Encéfalo/enzimología , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Estado Epiléptico/tratamiento farmacológico , Animales , Encéfalo/patología , Epilepsia del Lóbulo Temporal/enzimología , Epilepsia del Lóbulo Temporal/patología , Femenino , Humanos , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratas , Ratas Sprague-Dawley , Estado Epiléptico/enzimología , Estado Epiléptico/patología
6.
Sci Data ; 7(1): 430, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293578

RESUMEN

This data article presents a compilation of mechanical properties of 630 multi-principal element alloys (MPEAs). Built upon recently published MPEA databases, this article includes updated records from previous reviews (with minor error corrections) along with new data from articles that were published since 2019. The extracted properties include reported composition, processing method, microstructure, density, hardness, yield strength, ultimate tensile strength (or maximum compression strength), elongation (or maximum compression strain), and Young's modulus. Additionally, descriptors (e.g. grain size) not included in previous reviews were also extracted for articles that reported them. The database is hosted and continually updated on an open data platform, Citrination. To promote interpretation, some data are graphically presented.

7.
Science ; 370(6512): 95-101, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33004516

RESUMEN

Refractory multiprincipal element alloys (MPEAs) are promising materials to meet the demands of aggressive structural applications, yet require fundamentally different avenues for accommodating plastic deformation in the body-centered cubic (bcc) variants of these alloys. We show a desirable combination of homogeneous plastic deformability and strength in the bcc MPEA MoNbTi, enabled by the rugged atomic environment through which dislocations must navigate. Our observations of dislocation motion and atomistic calculations unveil the unexpected dominance of nonscrew character dislocations and numerous slip planes for dislocation glide. This behavior lends credence to theories that explain the exceptional high temperature strength of similar alloys. Our results advance a defect-aware perspective to alloy design strategies for materials capable of performance across the temperature spectrum.

8.
Science ; 369(6507)2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32855309

RESUMEN

Neuronal synapses undergo structural and functional changes throughout life, which are essential for nervous system physiology. However, these changes may also perturb the excitatory-inhibitory neurotransmission balance and trigger neuropsychiatric and neurological disorders. Molecular tools to restore this balance are highly desirable. Here, we designed and characterized CPTX, a synthetic synaptic organizer combining structural elements from cerebellin-1 and neuronal pentraxin-1. CPTX can interact with presynaptic neurexins and postsynaptic AMPA-type ionotropic glutamate receptors and induced the formation of excitatory synapses both in vitro and in vivo. CPTX restored synaptic functions, motor coordination, spatial and contextual memories, and locomotion in mouse models for cerebellar ataxia, Alzheimer's disease, and spinal cord injury, respectively. Thus, CPTX represents a prototype for structure-guided biologics that can efficiently repair or remodel neuronal circuits.


Asunto(s)
Proteína C-Reactiva/farmacología , Proteínas del Tejido Nervioso/farmacología , Vías Nerviosas/efectos de los fármacos , Precursores de Proteínas/farmacología , Receptores AMPA/metabolismo , Proteínas Recombinantes/farmacología , Sinapsis/efectos de los fármacos , Enfermedad de Alzheimer/terapia , Animales , Proteína C-Reactiva/química , Proteína C-Reactiva/uso terapéutico , Ataxia Cerebelosa/terapia , Modelos Animales de Enfermedad , Células HEK293 , Hipocampo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/uso terapéutico , Dominios Proteicos , Precursores de Proteínas/química , Precursores de Proteínas/uso terapéutico , Receptores de Glutamato/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/uso terapéutico , Columna Vertebral/efectos de los fármacos , Columna Vertebral/fisiología
9.
Cereb Cortex ; 28(7): 2594-2609, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29790938

RESUMEN

Mature granule cells are poorly excitable neurons that were recently shown to fire action potentials, preferentially in bursts. It is believed that the particularly pronounced short-term facilitation of mossy fiber synapses makes granule cell bursting a very effective means of properly transferring information to CA3. However, the mechanism underlying the unique bursting behavior of mature granule cells is currently unknown. Here, we show that Cav3.2 T-type channels at the axon initial segment are responsible for burst firing of mature granule cells in rats and mice. Accordingly, Cav3.2 knockout mice fire tonic spikes and exhibit impaired bursting, synaptic plasticity and dentate-to-CA3 communication. The data show that Cav3.2 channels are strong modulators of bursting and can be considered a critical molecular switch that enables effective information transfer from mature granule cells to the CA3 pyramids.


Asunto(s)
Potenciales de Acción/genética , Canales de Calcio Tipo T/deficiencia , Giro Dentado/citología , Neuronas/fisiología , Animales , Biofisica , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/genética , Estimulación Eléctrica , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/genética , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Vía Perforante/fisiología , Ratas , Ratas Wistar , Potenciales Sinápticos/efectos de los fármacos , Potenciales Sinápticos/genética
10.
Entropy (Basel) ; 20(9)2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-33265743

RESUMEN

We determined the entropy of high entropy alloys by investigating single-crystalline nickel and five high entropy alloys: two fcc-alloys, two bcc-alloys and one hcp-alloy. Since the configurational entropy of these single-phase alloys differs from alloys using a base element, it is important to quantify the entropy. Using differential scanning calorimetry, cp-measurements are carried out from -170 °C to the materials' solidus temperatures TS. From these experiments, we determined the thermal entropy and compared it to the configurational entropy for each of the studied alloys. We applied the rule of mixture to predict molar heat capacities of the alloys at room temperature, which were in good agreement with the Dulong-Petit law. The molar heat capacity of the studied alloys was about three times the universal gas constant, hence the thermal entropy was the major contribution to total entropy. The configurational entropy, due to the chemical composition and number of components, contributes less on the absolute scale. Thermal entropy has approximately equal values for all alloys tested by DSC, while the crystal structure shows a small effect in their order. Finally, the contributions of entropy and enthalpy to the Gibbs free energy was calculated and examined and it was found that the stabilization of the solid solution phase in high entropy alloys was mostly caused by increased configurational entropy.

11.
Entropy (Basel) ; 20(12)2018 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33266623

RESUMEN

This study examines one of the limitations of CALPHAD databases when applied to high entropy alloys and complex concentrated alloys. We estimate the level of the thermodynamic description, which is still sufficient to correctly predict thermodynamic properties of quaternary alloy systems, by comparing the results of CALPHAD calculations where quaternary phase space is extrapolated from binary descriptions to those resulting from complete binary and ternary interaction descriptions. Our analysis has shown that the thermodynamic properties of a quaternary alloy can be correctly predicted by direct extrapolation from the respective fully assessed binary systems (i.e., without ternary descriptions) only when (i) the binary miscibility gaps are not present, (ii) binary intermetallic phases are not present or present in a few quantities (i.e., when the system has low density of phase boundaries), and (iii) ternary intermetallic phases are not present. Because the locations of the phase boundaries and possibility of formation of ternary phases are not known when evaluating novel composition space, a higher credibility database is still preferable, while the calculations using lower credibility databases may be questionable and require additional experimental verification. We estimate the level of the thermodynamic description which would be still sufficient to correctly predict thermodynamic properties of quaternary alloy systems. The main factors affecting the accuracy of the thermodynamic predictions in quaternary alloys are identified by comparing the results of CALPHAD calculations where quaternary phase space is extrapolated from binary descriptions to those resulting from ternary system descriptions.

12.
Front Aging Neurosci ; 10: 411, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30631278

RESUMEN

Yokukansan (YKS) is a traditional Japanese herbal medicine that has been used in humans for the treatment of several neurological conditions, such as age-related anxiety and behavioral and psychological symptoms (BPSD) related to multiple forms of dementia, including Alzheimer's disease (AD). However, the cellular and molecular mechanisms targeted by YKS in the brain are not completely understood. Here, we compared the efficacy of YKS in ameliorating the age- and early-onset familial AD-related behavioral and cellular defects in two groups of animals: 18- to 22-month-old C57BL6/J wild-type mice and 6- to 9-month-old 5xFAD mice, as a transgenic mouse model of this form of AD. Animals were fed food pellets that contained YKS or vehicle. After 1-2 months of YKS treatment, we evaluated the cognitive improvements in both the aged and 5xFAD transgenic mice, and their brain tissues were further investigated to assess the molecular and cellular changes that occurred following YKS intake. Our results show that both the aged and 5xFAD mice exhibited impaired behavioral performance in novel object recognition and contextual fear conditioning (CFC) tasks, which was significantly improved by YKS. Further analyses of the brain tissue from these animals indicated that in aged mice, this improvement was associated with a reduction in astrogliosis, microglia activation and downregulation of the extracellular matrix (ECM), whereas in 5xFAD mice, none of these mechanisms were evident. These results show the differential action of YKS in healthy aged and 5xFAD mice. However, both aged and 5xFAD YKS-treated mice showed increased neuroprotective signaling through protein kinase B/Akt as the common mode of action. Our data suggest that YKS may impart its beneficial effects through Akt signaling in both 5xFAD mice and aged mice, with multiple additional mechanisms potentially contributing to its beneficial effects in aged animals.

13.
Cereb Cortex ; 27(2): 903-918, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28119345

RESUMEN

Heparan sulfate (HS) proteoglycans represent a major component of the extracellular matrix and are critical for brain development. However, their function in the mature brain remains to be characterized. Here, acute enzymatic digestion of HS side chains was used to uncover how HSs support hippocampal function in vitro and in vivo. We found that long-term potentiation (LTP) of synaptic transmission at CA3-CA1 Schaffer collateral synapses was impaired after removal of highly sulfated HSs with heparinase 1. This reduction was associated with decreased Ca2+ influx during LTP induction, which was the consequence of a reduced excitability of CA1 pyramidal neurons. At the subcellular level, heparinase treatment resulted in reorganization of the distal axon initial segment, as detected by a reduction in ankyrin G expression. In vivo, digestion of HSs impaired context discrimination in a fear conditioning paradigm and oscillatory network activity in the low theta band after fear conditioning. Thus, HSs maintain neuronal excitability and, as a consequence, support synaptic plasticity and learning.


Asunto(s)
Discriminación en Psicología/fisiología , Heparitina Sulfato/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Animales , Ancirinas/biosíntesis , Ancirinas/genética , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/fisiología , Señalización del Calcio/fisiología , Condicionamiento Psicológico , Miedo/fisiología , Liasa de Heparina/farmacología , Técnicas In Vitro , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/fisiología , Ritmo Teta
14.
Front Neurosci ; 9: 425, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26594144

RESUMEN

To characterize information transfer in defined brain circuits involving multiple brain regions and to evaluate underlying molecular mechanisms and their dysregulation in major brain diseases, a simple and reliable system is ultimately required for electrophysiological recording of local field potentials (LFPs, or local EEG) in combination with local delivery of drugs, enzymes and gene expression-controlling viruses near the place of recording. Here we provide a new design of a versatile reusable hybrid infusion-recording (HIME) system which can be utilized in freely moving mice performing cognitive tasks. The HIME system allows monitoring neuronal activity in multiple layers in several brain structures. Here, we provide examples of bilateral injection and recordings of full spectrum of learning and memory related oscillations, i.e., theta (4-12 Hz), gamma (40-100) and ripple activity (130-150 Hz), in five hippocampal layers as well as in the CA1 and CA2 regions. Furthermore, the system is designed to be used for parallel recordings in the amygdala, cortex and other brain areas, before and after infusion of reagents of interest, either in or off a cognitive test. We anticipate that the HIME system can be particularly convenient to advance functional neuroglycobiological studies and molecular deciphering of mechanisms governing long-term memory consolidation.

15.
Prog Brain Res ; 214: 53-80, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25410353

RESUMEN

Neural extracellular matrix (ECM) molecules derived from neurons and glial cells accumulate in the extracellular space and regulate synaptic plasticity through modulation of perisomal GABAergic inhibition, intrinsic neuronal excitability, integrin signaling, and activities of L-type Ca(2+) channels, NMDA receptors, and Rho-associated kinase. Genetic or enzymatic targeting of ECM molecules proved to bidirectionally modulate acquisition of memories, depending on experimental conditions, and to promote cognitive flexibility and extinction of fear and drug memories. Furthermore, evidence is accumulating that dysregulation of ECM is linked to major psychiatric and neurodegenerative diseases and that targeting ECM molecules may rescue cognitive deficits in animal models of these diseases. Thus, the ECM emerged as a key component of synaptic plasticity, learning, and memory and as an attractive target for developing new generation of synapse plasticizing drugs.


Asunto(s)
Encéfalo/citología , Matriz Extracelular/fisiología , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Encéfalo/fisiología
16.
J Neurosci ; 34(48): 16022-30, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25429143

RESUMEN

In postnatal development, GluN2B-containing NMDARs are critical for the functional maturation of glutamatergic synapses. GluN2B-containing NMDARs prevail until the second postnatal week when GluN2A subunits are progressively added, conferring mature properties to NMDARs. In cortical principal neurons, deletion of GluN2B results in an increase in functional AMPAR synapses, suggesting that GluN2B-containing NMDARs set a brake on glutamate synapse maturation. The function of GluN2B in the maturation of glutamatergic inputs to cortical interneurons is not known. To examine the function of GluN2B in interneurons, we generated mutant mice with conditional deletion of GluN2B in interneurons (GluN2B(ΔGAD67)). In GluN2B(ΔGAD67) mice interneurons distributed normally in cortical brain regions. After the second postnatal week, GluN2B(ΔGAD67) mice developed hippocampal seizures and died shortly thereafter. Before the onset of seizures, GluN2B-deficient hippocampal interneurons received fewer glutamatergic synaptic inputs than littermate controls, indicating that GluN2B-containing NMDARs positively regulate the maturation of glutamatergic input synapses in interneurons. These findings suggest that GluN2B-containing NMDARs keep the circuit activity under control by promoting the maturation of excitatory synapses in interneurons.


Asunto(s)
Ácido Glutámico/metabolismo , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Interneuronas/metabolismo , Receptores de N-Metil-D-Aspartato/deficiencia , Sinapsis/metabolismo , Animales , Animales Recién Nacidos , Femenino , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos , Receptores de N-Metil-D-Aspartato/fisiología
17.
J Neurosci ; 32(7): 2263-75, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22396402

RESUMEN

Neural cell adhesion molecule (NCAM) is the predominant carrier of the unusual glycan polysialic acid (PSA). Deficits in PSA and/or NCAM expression cause impairments in hippocampal long-term potentiation and depression (LTP and LTD) and are associated with schizophrenia and aging. In this study, we show that impaired LTP in adult NCAM-deficient (NCAM(-/-)) mice is restored by increasing the activity of the NMDA subtype of glutamate receptor (GluN) through either reducing the extracellular Mg2+ concentration or applying d-cycloserine (DCS), a partial agonist of the GluN glycine binding site. Pharmacological inhibition of the GluN2A subtype reduced LTP to the same level in NCAM(-/-) and wild-type (NCAM(+/+)) littermate mice and abolished the rescue by DCS in NCAM(-/-) mice, suggesting that the effects of DCS are mainly mediated by GluN2A. The insufficient contribution of GluN to LTD in NCAM(-/-) mice was also compensated for by DCS. Furthermore, impaired contextual and cued fear conditioning levels were restored in NCAM(-/-) mice by administration of DCS before conditioning. In 12-month-old NCAM(-/-), but not NCAM(+/+) mice, there was a decline in LTP compared with 3-month-old mice that could be rescued by DCS. In 24-month-old mice of both genotypes, there was a reduction in LTP that could be fully restored by DCS in NCAM(+/+) mice but only partially restored in NCAM(-/-) mice. Thus, several deficiencies of NCAM(-/-) mice can be ameliorated by enhancing GluN2A-mediated neurotransmission with DCS.


Asunto(s)
Envejecimiento/fisiología , Aprendizaje/fisiología , Moléculas de Adhesión de Célula Nerviosa/deficiencia , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Factores de Edad , Envejecimiento/genética , Animales , Cicloserina/farmacología , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones Noqueados , Inhibición Neural/fisiología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Transmisión Sináptica/efectos de los fármacos
18.
Int J Biochem Cell Biol ; 44(4): 591-5, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22300986

RESUMEN

Dynamic regulation of glycosylation of the neural cell adhesion molecule (NCAM) by an unusual large negatively charged polysialic acid (PSA) is the major prerequisite for correct formation of brain circuitries during development and for normal synaptic plasticity, learning and memory in the adult. Traditionally, PSA is viewed as a de-adhesive highly hydrated molecule, which interferes with cell adhesion and promotes cellular/synaptic dynamics by steric hindrance. Analysis of synaptic functions of PSA-NCAM highlighted additional features of this molecule. First, PSA promotes interaction of NCAM with heparan sulfate proteoglycans and thus stimulates synaptogenesis. Second, PSA-NCAM modulates glutamate receptors: it restrains activity of extrasynaptic GluN2B-containing NMDA receptors and facilitates activity of a subset of AMPA receptors. Perturbation in polysialylation and/or NCAM expression in mouse models recapitulates many symptoms of human brain disorders such as schizophrenia, depression, anxiety and Alzheimer's disease.


Asunto(s)
Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Proteoglicanos/metabolismo , Receptores de Glutamato/metabolismo , Ácidos Siálicos/metabolismo , Sinapsis/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Molécula L1 de Adhesión de Célula Nerviosa/química , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología , Ácidos Siálicos/química
19.
Neuron ; 67(1): 116-28, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20624596

RESUMEN

Although the extracellular matrix plays an important role in regulating use-dependent synaptic plasticity, the underlying molecular mechanisms are poorly understood. Here we examined the synaptic function of hyaluronic acid (HA), a major component of the extracellular matrix. Enzymatic removal of HA with hyaluronidase reduced nifedipine-sensitive whole-cell Ca(2+) currents, decreased Ca(2+) transients mediated by L-type voltage-dependent Ca(2+) channels (L-VDCCs) in postsynaptic dendritic shafts and spines, and abolished an L-VDCC-dependent component of long-term potentiation (LTP) at the CA3-CA1 synapses in the hippocampus. Adding exogenous HA, either by bath perfusion or via local delivery near recorded synapses, completely rescued this LTP component. In a heterologous expression system, exogenous HA rapidly increased currents mediated by Ca(v)1.2, but not Ca(v)1.3, subunit-containing L-VDCCs, whereas intrahippocampal injection of hyaluronidase impaired contextual fear conditioning. Our observations unveil a previously unrecognized mechanism by which the perisynaptic extracellular matrix influences use-dependent synaptic plasticity through regulation of dendritic Ca(2+) channels.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Hipocampo/citología , Ácido Hialurónico/metabolismo , Potenciación a Largo Plazo/fisiología , Sinapsis/fisiología , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Análisis de Varianza , Animales , Células CHO , Agonistas de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/genética , Condicionamiento Clásico/efectos de los fármacos , Cricetinae , Cricetulus , Interacciones Farmacológicas , Estimulación Eléctrica/métodos , Miedo/efectos de los fármacos , Femenino , Hipocampo/fisiología , Hialuronoglucosaminidasa/farmacología , Técnicas In Vitro , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Nifedipino/farmacología , Técnicas de Placa-Clamp/métodos , Transfección/métodos
20.
J Neurosci ; 30(11): 4171-83, 2010 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-20237287

RESUMEN

The neural cell adhesion molecule (NCAM) is the predominant carrier of alpha2,8 polysialic acid (PSA) in the mammalian brain. Abnormalities in PSA and NCAM expression are associated with schizophrenia in humans and cause deficits in hippocampal synaptic plasticity and contextual fear conditioning in mice. Here, we show that PSA inhibits opening of recombinant NMDA receptors composed of GluN1/2B (NR1/NR2B) or GluN1/2A/2B (NR1/NR2A/NR2B) but not of GluN1/2A (NR1/NR2A) subunits. Deficits in NCAM/PSA increase GluN2B-mediated transmission and Ca(2+) transients in the CA1 region of the hippocampus. In line with elevation of GluN2B-mediated transmission, defects in long-term potentiation in the CA1 region and contextual fear memory in NCAM/PSA-deficient mice are abrogated by application of a GluN2B-selective antagonist. Furthermore, treatment with the glutamate scavenger glutamic-pyruvic transaminase, ablation of Ras-GRF1 (a mediator of GluN2B signaling to p38 MAPK), or direct inhibition of hyperactive p38 MAPK can restore impaired synaptic plasticity in brain slices lacking PSA/NCAM. Thus, PSA carried by NCAM regulates plasticity and learning by inhibition of the GluN2B-Ras-GRF1-p38 MAPK signaling pathway. These findings implicate carbohydrates carried by adhesion molecules in modulating NMDA receptor signaling in the brain and demonstrate reversibility of cognitive deficits associated with ablation of a schizophrenia-related adhesion molecule.


Asunto(s)
Aprendizaje/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Moléculas de Adhesión de Célula Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Ácidos Siálicos/fisiología , Animales , Región CA1 Hipocampal/fisiología , Células CHO , Cricetinae , Cricetulus , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...