Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Thyroid ; 34(6): 796-805, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38526409

RESUMEN

Background: Thyroid hormones regulate cardiac functions mainly through direct actions in the heart and by binding to the thyroid hormone receptor (TR) isoforms α1 and ß. While the role of the most abundantly expressed isoform, TRα1, is widely studied and well characterized, the role of TRß in regulating heart functions is still poorly understood, primarily due to the accompanying elevation of circulating thyroid hormone in TRß knockout mice (TRß-KO). However, their hyperthyroidism is ameliorated at thermoneutrality, which allows studying the role of TRß without this confounding factor. Methods: Here, we noninvasively monitored heart rate in TRß-KO mice over several days using radiotelemetry at different housing temperatures (22°C and 30°C) and upon 3,3',5-triiodothyronine (T3) administration in comparison to wild-type animals. Results: TRß-KO mice displayed normal average heart rate at both 22°C and 30°C with only minor changes in heart rate frequency distribution, which was confirmed by independent electrocardiogram recordings in freely-moving conscious mice. Parasympathetic nerve activity was, however, impaired in TRß-KO mice at 22°C, and only partly rescued at 30°C. As expected, oral treatment with pharmacological doses of T3 at 30°C led to tachycardia in wild-types, accompanied by broader heart rate frequency distribution and increased heart weight. The TRß-KO mice, in contrast, showed blunted tachycardia, as well as resistance to changes in heart rate frequency distribution and heart weight. At the molecular level, these observations were paralleled by a blunted cardiac mRNA induction of several important genes, including the pacemaker channels Hcn2 and Hcn4, as well as Kcna7. Conclusions: The phenotyping of TRß-KO mice conducted at thermoneutrality allows novel insights on the role of TRß in cardiac functions in the absence of the usual confounding hyperthyroidism. Even though TRß is expressed at lower levels than TRα1 in the heart, our findings demonstrate an important role for this isoform in the cardiac response to thyroid hormones.


Asunto(s)
Cardiomegalia , Frecuencia Cardíaca , Ratones Noqueados , Taquicardia , Receptores beta de Hormona Tiroidea , Triyodotironina , Animales , Receptores beta de Hormona Tiroidea/genética , Receptores beta de Hormona Tiroidea/metabolismo , Taquicardia/fisiopatología , Taquicardia/metabolismo , Ratones , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Cardiomegalia/genética , Triyodotironina/sangre , Masculino , Hormonas Tiroideas/metabolismo , Sistema Nervioso Parasimpático/fisiopatología , Temperatura , Electrocardiografía
2.
Thyroid ; 34(2): 243-251, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38149585

RESUMEN

Background: The importance of thyroid hormones (THs) for peripheral body temperature regulation has been long recognized, as medical conditions such as hyper- and hypothyroidism lead to alterations in body temperature and energy metabolism. In the past decade, the brain actions of THs and their respective nuclear receptors, thyroid hormone receptor α1 (TRα1) and thyroid hormone receptor beta (TRß), coordinating body temperature regulation have moved into focus. However, the exact roles of the individual TR isoforms and their precise neuroanatomical substrates remain poorly understood. Methods: Here we used mice expressing a mutant TRα1 (TRα1+m) as well as TRß knockouts to study body temperature regulation using radiotelemetry in conscious and freely moving animals at different ambient temperatures, including their response to oral 3,3',5-triiodothyronine (T3) treatment. Subsequently, we tested the effects of a dominant-negative TRα1 on body temperature after adeno-associated virus (AAV)-mediated expression in the hypothalamus, a region known to be involved in thermoregulation. Results: While TRß seems to play a negligible role in body temperature regulation, TRα1+m mice had lower body temperature, which was surprisingly not entirely normalized at 30°C, where defects in facultative thermogenesis or tail heat loss are eliminated as confounding factors. Only oral T3 treatment fully normalized the body temperature profile of TRα1+m mice, suggesting that the mutant TRα1 confers an altered central temperature set point in these mice. When we tested this hypothesis more directly by expressing the dominant-negative TRα1 selectively in the hypothalamus via AAV transfection, we observed a similarly reduced body temperature at room temperature and 30°C. Conclusion: Our data suggest that TRα1 signaling in the hypothalamus is important for maintaining body temperature. However, further studies are needed to dissect the precise neuroanatomical substrates and the downstream pathways mediating this effect.


Asunto(s)
Hipotálamo , Receptores de Hormona Tiroidea , Animales , Ratones , Temperatura Corporal , Hipotálamo/metabolismo , Hipotiroidismo/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Receptores alfa de Hormona Tiroidea/metabolismo , Hormonas Tiroideas , Triyodotironina/farmacología , Triyodotironina/metabolismo
3.
iScience ; 26(10): 108064, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37822510

RESUMEN

Agonists for thyroid hormone receptor ß (TRß) show promise in preclinical studies and clinical trials to improve non-alcoholic fatty liver disease. A recent study on human livers, however, revealed reduced TRß expression in non-alcoholic steatohepatitis (NASH), indicating a developing thyroid hormone resistance, which could constitute a major obstacle for those agonists. Using a rapid NASH paradigm combining choline-deficient high-fat diet and thermoneutrality, we confirm that TRß declines during disease progression in mice similar to humans. Contrary to expectations, mice lacking TRß showed less liver fibrosis, and NASH marker genes were not elevated. Conversely, increasing TRß expression in wild-type NASH mice using liver-targeted gene therapy did not improve histology, gene expression, or metabolic parameters, indicating that TRß receptor levels are of minor relevance for NASH development and progression in our model, and suggest that liver-rather than isoform-specificity might be more relevant for NASH treatment with thyroid hormone receptor agonists.

4.
Nat Commun ; 14(1): 3312, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286550

RESUMEN

Mutations in thyroid hormone receptor α1 (TRα1) cause Resistance to Thyroid Hormone α (RTHα), a disorder characterized by hypothyroidism in TRα1-expressing tissues including the heart. Surprisingly, we report that treatment of RTHα patients with thyroxine to overcome tissue hormone resistance does not elevate their heart rate. Cardiac telemetry in male, TRα1 mutant, mice indicates that such persistent bradycardia is caused by an intrinsic cardiac defect and not due to altered autonomic control. Transcriptomic analyses show preserved, thyroid hormone (T3)-dependent upregulation of pacemaker channels (Hcn2, Hcn4), but irreversibly reduced expression of several ion channel genes controlling heart rate. Exposure of TRα1 mutant male mice to higher maternal T3 concentrations in utero, restores altered expression and DNA methylation of ion channels, including Ryr2. Our findings indicate that target genes other than Hcn2 and Hcn4 mediate T3-induced tachycardia and suggest that treatment of RTHα patients with thyroxine in high dosage without concomitant tachycardia, is possible.


Asunto(s)
Síndrome de Resistencia a Hormonas Tiroideas , Tiroxina , Masculino , Animales , Ratones , Tiroxina/uso terapéutico , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Síndrome de Resistencia a Hormonas Tiroideas/genética , Hormonas Tiroideas , Receptores alfa de Hormona Tiroidea/genética , Receptores alfa de Hormona Tiroidea/metabolismo , Mutación , Taquicardia/genética
5.
J Vis Exp ; (184)2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35815969

RESUMEN

Visual evoked potentials (VEP) allow the characterization of visual function in preclinical mouse models. Various methods exist to measure VEPs in mice, from non-invasive EEG, subcutaneous single-electrodes, and ECoG to fully invasive intracortical multichannel visual cortex recordings. It can be useful to acquire a global, topographical EEG-level characterization of visual responses previous to local intracortical microelectrode measurements in acute experimental settings. For example, one use case is to assess global cross-modal changes in VEP topography in deafness models before studying its effects on a local intracortical level. Multichannel epicranial EEG is a robust method to acquire such an overview measure of cortical visual activity. Multichannel epicranial EEG provides comparable results through a standardized, consistent approach to, for example, identify cross-modal, pathological, or age-related changes in cortical visual function. The current study presents a method to obtain the topographical distribution of flash-evoked VEPs with a 32-channel thin-film EEG electrode array in anesthetized mice. Combined with analysis in the time and frequency domain, this approach allows fast characterization and screening of the topography and basic visual properties of mouse cortical visual function, which can be combined with various acute experimental settings.


Asunto(s)
Potenciales Evocados Visuales , Corteza Visual , Animales , Electrodos , Electroencefalografía/métodos , Ratones , Examen Neurológico , Estimulación Luminosa/métodos , Corteza Visual/fisiología
6.
Endocr Connect ; 10(2): R106-R115, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33491659

RESUMEN

A normal thyroid status is crucial for body temperature homeostasis, as thyroid hormone regulates both heat loss and conservation as well as heat production in the thermogenic tissues. Brown adipose tissue (BAT) is the major site of non-shivering thermogenesis and an important target of thyroid hormone action. Thyroid hormone not only regulates the tissue's sensitivity to sympathetic stimulation by norepinephrine but also the expression of uncoupling protein 1, the key driver of BAT thermogenesis. Vice versa, sympathetic stimulation of BAT triggers the expression of deiodinase type II, an enzyme that enhances local thyroid hormone availability and signaling. This review summarizes the current knowledge on how thyroid hormone controls BAT thermogenesis, aiming to dissect the direct actions of the hormone in BAT and its indirect actions via the CNS, browning of white adipose tissue or heat loss over body surfaces. Of particular relevance is the apparent dose dependency of the observed effects, as we find that minor or moderate changes in thyroid hormone levels often have different effects as compared to high pharmacological doses. Moreover, we conclude that the more recent findings require a reevaluation of older studies, as key aspects such as heat loss or central BAT activation may not have received the necessary attention during the interpretation of these early findings. Finally, we provide a list of what we believe are the most relevant questions in the field that to date are still enigmatic and require further studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...