Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38730753

RESUMEN

This review aims to highlight the most recent advances in the field of the synthesis of branched copolymers and nanogels using reversible addition-fragmentation chain transfer (RAFT) polymerization. RAFT polymerization is a reversible deactivation radical polymerization technique (RDRP) that has gained tremendous attention due to its versatility, compatibility with a plethora of functional monomers, and mild polymerization conditions. These parameters lead to final polymers with good control over the molar mass and narrow molar mass distributions. Branched polymers can be defined as the incorporation of secondary polymer chains to a primary backbone, resulting in a wide range of complex macromolecular architectures, like star-shaped, graft, and hyperbranched polymers and nanogels. These subcategories will be discussed in detail in this review in terms of synthesis routes and properties, mainly in solutions.

2.
Pharmaceutics ; 15(7)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37514036

RESUMEN

Chitosan is a naturally occurring polymer derived from the deacetylation of chitin, which is an abundant carbohydrate found mainly in the shells of various marine and terrestrial (micro)organisms. Chitosan has been extensively used to construct nanoparticles (NPs), which are biocompatible, biodegradable, non-toxic, easy to prepare, and can function as effective drug delivery systems. Moreover, chitosan NPs have been employed in gene and vaccine delivery, as well as advanced cancer therapy, and they can also serve as new therapeutic tools against viral infections. In this review, we summarize the most recent developments in the field of chitosan-based NPs intended as nucleic acid delivery vehicles and gene therapy vectors. Special attention is given to the technological aspects of chitosan complexes for nucleic acid delivery.

3.
Polymers (Basel) ; 13(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34451146

RESUMEN

The investigation of properties of amphiphilic block copolymers as stabilizers for non-lamellar lyotropic liquid crystalline nanoparticles represents a fundamental issue for the formation, stability and upgraded functionality of these nanosystems. The aim of this work is to use amphiphilic block copolymers, not studied before, as stabilizers of glyceryl monooleate 1-(cis-9-octadecenoyl)-rac-glycerol (GMO) colloidal dispersions. Nanosystems were prepared with the use of poly(ethylene oxide)-b-poly(lactic acid) (PEO-b-PLA) and poly(ethylene oxide)-b-poly(5-methyl-5-ethyloxycarbonyl-1,3-dioxan-2-one) (PEO-b-PMEC) block copolymers. Different GMO:polymer molar ratios lead to formulation of nanoparticles with different size and internal organization, depending on the type of hydrophobic block. Resveratrol was loaded into the nanosystems as a model hydrophobic drug. The physicochemical and morphological characteristics of the prepared nanosystems were investigated by dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryo-TEM), fast Fourier transform (FFT) analysis and X-ray diffraction (XRD). The studies allowed the description of the lyotropic liquid crystalline nanoparticles and evaluation of impact of copolymer composition on these nanosystems. The structures formed in GMO:block copolymer colloidal dispersions were compared with those discussed previously. The investigations broaden the toolbox of polymeric stabilizers for the development of this type of hybrid polymer/lipid nanostructures.

4.
Polymers (Basel) ; 13(11)2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067443

RESUMEN

This review article aims to cover the most recent advances regarding the synthesis of linear ABC-type triblock terpolymers and star-shaped polymers by RAFT polymerization, as well as their self-assembly properties in aqueous solutions. RAFT polymerization has received extensive attention, as it is a versatile technique, compatible with a great variety of functional monomers and reaction conditions, while providing exceptional and precise control over the final structure, with well-defined side-groups and post-polymerization engineering potential. Linear triblock terpolymers synthesis can lead to very interesting novel ideas, since there are countless combinations of stimuli/non-stimuli and hydrophilic/hydrophobic monomers that someone can use. One of their most interesting features is their ubiquitous ability to self-assemble in different nanostructures depending on their degree of polymerization (DP), block composition, solubilization protocol, internal and external stimuli. On the other hand, star-shaped polymers exhibit a more stable nanostructure, with a distinct crosslinked core and arm blocks that can also incorporate stimuli-responsive blocks for "smart" applications.

5.
J Liposome Res ; 31(3): 279-290, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33590785

RESUMEN

The purpose of this study is to prepare stimuli-responsive chimeric liposomes (i.e. hybrid polymer-lipid liposomes) containing functional copolymers and conduct aqueous solution studies in order to determine their properties and potential as drug-delivery nanocarriers. Two random copolymers, composed of the hydrophilic, pH and thermo-responsive 2-(dimethyl amino) ethyl methacrylate (DMAEMA) monomer and the hydrophobic stearyl methacrylate (SMA) monomer, were synthesized via free-radical polymerization and molecularly characterized using SEC, FTIR, and 1H-NMR. The synthesis was followed by aqueous solution studies, utilising dynamic light scattering (DLS) in order to determine their stimuli responsive self-assembly properties. The preparation of chimeric liposomes was mediated by thin film deposition and hydration, followed by aqueous solution studies via DLS, ζ-potential and fluorescence spectroscopy. The drug-loading studies include curcumin loading via a thin film deposition and hydration technique, while aqueous solution properties of the drug-loaded chimeric liposomes were determined utilizing DLS, and UV-Vis spectroscopy.


Asunto(s)
Liposomas , Micelas , Sistemas de Liberación de Medicamentos , Concentración de Iones de Hidrógeno , Polímeros
6.
Acta Pharm ; 70(4): 527-538, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32412433

RESUMEN

A variety of commonly used hydrogels were utilized in the preparation of calcium alginate beads, which incorporate the chronobiotic hormone melatonin (MLT). The in vitro release of the hormone in aqueous media at pH 1.2 and 6.8 was probed in the conjunction with the swelling of the beads and their thermal degradation properties. It has been found that the release of MLT from the beads was reversibly proportional to the extent of their expansion, which depends on the molecular mass/viscosity of the biopolymers present in the beads; the higher the molecular mass/viscosity of the hydrogels the greater the beads swelling and the less the MLT's release. Thermogravimetric analysis (TGA) data support the presence of the components in the hybrid hydrogel beads and elucidate their effects on the thermal stability of the systems. Thus, the physicochemical properties of the biopolymers used, along with their stereoelectronic features modulate the release of MLT from the beads, providing formulations able to treat sleep onset related problems or dysfunctions arising from poor sleep maintenance.


Asunto(s)
Alginatos/química , Melatonina/química , Portadores de Fármacos/química , Composición de Medicamentos , Liberación de Fármacos , Hidrogeles , Concentración de Iones de Hidrógeno , Cinética , Melatonina/administración & dosificación , Peso Molecular , Trastornos del Sueño-Vigilia/tratamiento farmacológico , Termogravimetría , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...