Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39000019

RESUMEN

Isoscopoletin is a compound derived from various plants traditionally used for the treatment of skin diseases. However, there have been no reported therapeutic effects of isoscopoletin on atopic dermatitis (AD). AD is a chronic inflammatory skin disease, and commonly used treatments have side effects; thus, there is a need to identify potential natural candidate substances. In this study, we aimed to investigate whether isoscopoletin regulates the inflammatory mediators associated with AD in TNF-α/IFN-γ-treated HaCaT cells and PMA/ionomycin treated RBL-2H3 cells. We determined the influence of isoscopoletin on cell viability through an MTT assay and investigated the production of inflammatory mediators using ELISA and RT-qPCR. Moreover, we analyzed the transcription factors that regulate inflammatory mediators using Western blots and ICC. The results showed that isoscopoletin did not affect cell viability below 40 µM in either HaCaT or RBL-2H3 cells. Isoscopoletin suppressed the production of TARC/CCL17, MDC/CCL22, MCP-1/CCL2, IL-8/CXCL8, and IL-1ß in TNF-α/IFN-γ-treated HaCaT cells and IL-4 in PMA/ionomycin-treated RBL-2H3 cells. Furthermore, in TNF-α/IFN-γ-treated HaCaT cells, the phosphorylation of signaling pathways, including MAPK, NF-κB, STAT, and AKT/PKB, increased but was decreased by isoscopoletin. In PMA/ionomycin-treated RBL-2H3 cells, the activation of signaling pathways including PKC, MAPK, and AP-1 increased but was decreased by isoscopoletin. In summary, isoscopoletin reduced the production of inflammatory mediators by regulating upstream transcription factors in TNF-α/IFN-γ-treated HaCaT cells and PMA/ionomycin-treated RBL-2H3 cells. Therefore, we suggest that isoscopoletin has the potential for a therapeutic effect, particularly in skin inflammatory diseases such as AD, by targeting keratinocytes and basophils.


Asunto(s)
Basófilos , Supervivencia Celular , Citocinas , Queratinocitos , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Citocinas/metabolismo , Basófilos/efectos de los fármacos , Basófilos/metabolismo , Supervivencia Celular/efectos de los fármacos , Células HaCaT , Línea Celular , Factor de Necrosis Tumoral alfa/metabolismo , Interferón gamma/farmacología , Interferón gamma/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/metabolismo
2.
Heliyon ; 9(12): e22932, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38125474

RESUMEN

Hyperproduction of immune cell-derived inflammatory molecules and recruitment of immune cells promote the development of allergic asthma (AA). Aromadendrin (ARO) has various biological properties including anti-inflammatory effects. In this study, we evaluated the ameliorative effects of ARO on the development of AA in vitro and in vivo. Phorbol 12-myristate 13-acetate (PMA, 100 nM) was used to induce inflammation in A549 airway epithelial cells. The cohesion of A549 and eosinophil EOL-1 cells was studied. Ovalbumin (30 or 60 µg)/Alum (3 mg) mixture was adapted for AA induction in mice. ARO (5 or 10 mg/kg, p. o.) was administered to mice to investigate its ameliorative effect on AA development. Enzyme-linked immunosorbent assay, western blotting, and hematoxylin and eosin/periodic acid Schiff staining were performed to study the ameliorative effect of ARO on bronchial inflammation. In PMA-stimulated A549 cells, the upregulation of cytokines (interleukin [IL]-1ß/IL-6/tumor necrosis factor alpha [TNF-α]/monocyte chemoattractant protein [MCP]-1]) and nuclear factor kappa B (NF-κB) activation was effectively reduced by ARO pretreatment. ARO suppressed the adhesion of A549 cells and eosinophils. In ovalbumin-induced AA mice, the levels of cells, such as eosinophils, Th2 cytokines, MCP-1 in bronchoalveolar lavage fluid, IgE in serum, and inducible nitric oxide synthase/cyclooxygenase-2 expression in the lung tissue were upregulated, which were all suppressed by ARO. In addition, the increase in cell inflow and mucus formation in the lungs of AA mice was reversed by ARO as per histological analysis. ARO also modulated NF-κB activation in the lungs of AA mice. Overall, the anti-inflammatory properties of ARO in vitro/in vivo studies of AA were notable. Thus, ARO has a modulatory effect on bronchial inflammation and may be a potential adjuvant for AA treatment.

3.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36499236

RESUMEN

Methyl p-coumarate (methyl p-hydroxycinnamate) (MH) is a natural compound found in a variety of plants. In the present study, we evaluated the ameliorative effects of MH on airway inflammation in an experimental model of allergic asthma (AA). In this in vitro study, MH was found to exert anti-inflammatory activity on PMA-stimulated A549 airway epithelial cells by suppressing the secretion of IL-6, IL-8, MCP-1, and ICAM-1. In addition, MH exerted an inhibitory effect not only on NF-κB (p-NF-κB and p-IκB) and AP-1 (p-c-Fos and p-c-Jun) activation but also on A549 cell and EOL-1 cell (eosinophil cell lines) adhesion. In LPS-stimulated RAW264.7 macrophages, MH had an inhibitory effect on TNF-α, IL-1ß, IL-6, and MCP-1. The results from in vivo study revealed that the increases in eosinophils/Th2 cytokines/MCP-1 in the bronchoalveolar lavage fluid (BALF) and IgE in the serum of OVA-induced mice with AA were effectively inhibited by MH administration. MH also exerted a reductive effect on the immune cell influx, mucus secretion, and iNOS/COX-2 expression in the lungs of mice with AA. The effects of MH were accompanied by the inactivation of NF-κB. Collectively, the findings of the present study indicated that MH attenuates airway inflammation in mice with AA, suggesting its potential as an adjuvant in asthma therapy.


Asunto(s)
Asma , FN-kappa B , Animales , Ratones , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-6 , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Ovalbúmina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...