Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int Microbiol ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466360

RESUMEN

The aim of this study was to explore the taxonomic identification and evaluate the safety of a bacterium, Enterococcus lactis IDCC 2105, isolated from homemade cheese in Korea, using whole genome sequence (WGS) analysis. It sought to identify the species level of this Enterococcus spp., assess its antibiotic resistance, and evaluate its virulence potential. WGS analysis confirmed the bacterial strain IDCC 2105 as E. lactis and identified genes responsible for resistance to erythromycin and clindamycin, specifically msrC, and eatAv, which are chromosomally located, indicating a minimal risk for horizontal gene transfer. The absence of plasmids in E. lactis IDCC 2105 further diminishes the likelihood of resistance gene dissemination. Additionally, our investigation into seven virulence factors, including hemolysis, platelet aggregation, biofilm formation, hyaluronidase, gelatinase, ammonia production, and ß-glucuronidase activity, revealed no detectable virulence traits. Although bioinformatic analysis suggested the presence of collagen adhesion genes acm and scm, these were not corroborated by phenotypic virulence assays. Based on these findings, E. lactis IDCC 2105 presents as a safe strain for potential applications, contributing valuable information on its taxonomy, antibiotic resistance profile, and lack of virulence factors, supporting its use in food products.

2.
Appl Microbiol Biotechnol ; 108(1): 12, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38157004

RESUMEN

Functional microbiome development has steadily increased; with this, the viability of microbial strains must be maintained not only after the manufacturing process but also at the time of consumption. Survival is threatened by various unavoidable factors during freeze-drying and shelf storage. Here, the aim was to optimize the manufacturing process of the functional strain Lactiplantibacillus plantarum IDCC 3501 after freeze-drying and storage. Explosive growth was achieved using a medium composition with two nitrogen sources and a mineral, and growth was drastically improved by neutralizing the medium pH during the culture of L. plantarum IDCC 3501. Culture optimization involved a smaller cell size, leading to less intracellular free water. Moreover, when maltodextrin (MD) powder was directly added to the harvested cells, some intracellular free water was extracted from the bacterial cells, resulting in a dramatic increase in the viability of L. plantarum IDCC 3501 after freeze-drying and subsequent storage. Furthermore, MD enhanced survival in a dose-dependent manner. Bacterial survival was correlated with lysozyme tolerance; therefore, the positive result might have been caused by the osmotic dehydration of intracellular free water, which would potentially damage the bacterial cells via ice crystallization and/or a phase transition during freeze-drying. These critical factors of L. plantarum IDCC 3501 processing provide perspectives on survival issues for manufacturing microbiome strains. KEY POINTS: • Culture conditions for probiotic bacteria were optimized for high growth yield. • Osmotic dehydration improved bacterial survival after manufacturing and shelf storage. • Reduction in intracellular free water content is crucial for intact survival.


Asunto(s)
Deshidratación , Lactobacillus plantarum , Humanos , Liofilización/métodos , Agua
3.
J Ginseng Res ; 44(3): 413-423, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32372863

RESUMEN

BACKGROUND: Ginseng berries (GBs) show temporal metabolic variations among different maturation stages, determining their organoleptic and functional properties. METHODS: We analyzed metabolic variations concomitant to five different maturation stages of GBs including immature green (IG), mature green (MG), partially red (PR), fully red (FR), and overmature red (OR) using mass spectrometry (MS)-based metabolomic profiling and multivariate analyses. RESULTS: The partial least squares discriminant analysis score plot based on gas chromatography-MS datasets highlighted metabolic disparity between preharvest (IG and MG) and harvest/postharvest (PR, FR, and OR) GB extracts along PLS1 (34.9%) with MG distinctly segregated across PLS2 (18.2%). Forty-three significantly discriminant primary metabolites were identified encompassing five developmental stages (variable importance in projection > 1.0, p < 0.05). Among them, most amino acids, organic acids, 5-C sugars, ethanolamines, purines, and palmitic acid were detected in preharvest GB extracts, whereas 6-C sugars, phenolic acid, and oleamide levels were distinctly higher during later maturation stages. Similarly, the partial least squares discriminant analysis based on liquid chromatography-MS datasets displayed preharvest and harvest/postharvest stages clustered across PLS1 (11.1 %); however, MG and PR were separated from IG, FR, and OR along PLS2 (5.6 %). Overall, 24 secondary metabolites were observed significantly discriminant (variable importance in projection > 1.0, p < 0.05), with most displaying higher relative abundance during preharvest stages excluding ginsenosides Rg1 and Re. Furthermore, we observed strong positive correlations between total flavonoid and phenolic metabolite contents in GB extracts and antioxidant activity. CONCLUSION: Comprehending the dynamic metabolic variations associated with GB maturation stages rationalize their optimal harvest time per se the related agroeconomic traits.

4.
Sci Rep ; 9(1): 1044, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30705339

RESUMEN

The inconsistent vitality and efficiency of plant growth promoting bacteria (PGPB) are technical limitations in the application of PGPB as biofertilizer. To improve these disadvantages, we examined the potential of micro Dielectric Barrier Discharge (DBD) plasma to enhance the vitality and functional activity of a PGPB, Bacillus subtilis CB-R05. Bacterial multiplication and motility were increased after plasma treatment, and the level of a protein involved in cell division was elevated in plasma treated bacteria. Rice seeds inoculated with plasma treated bacteria showed no significant change in germination, but growth and grain yield of rice plants were significantly enhanced. Rice seedlings infected with plasma treated bacteria showed elevated tolerance to fungal infection. SEM analysis demonstrated that plasma treated bacteria colonized more densely in the broader area of rice plant roots than untreated bacteria. The level of IAA (Indole-3-Acetic Acid) and SA (Salicylic Acid) hormone was higher in rice plants infected with plasma treated than with untreated bacteria. Our results suggest that plasma can accelerate bacterial growth and motility, possibly by increasing the related gene expression, and the increased bacterial vitality improves colonization within plant roots and elevates the level of phytohormones, leading to the enhancement of plant growth, yield, and tolerance to disease.


Asunto(s)
Presión Atmosférica , Bacillus subtilis/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Desarrollo de la Planta/efectos de los fármacos , Gases em Plasma/farmacología , Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/ultraestructura , Proteínas Bacterianas/metabolismo , Biomasa , Ensayo de Unidades Formadoras de Colonias , Electricidad , Germinación , Oryza/crecimiento & desarrollo , Oryza/microbiología , Oryza/ultraestructura , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/biosíntesis
5.
Food Chem ; 266: 161-169, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30381171

RESUMEN

Untargeted metabolomics unraveled the effects of varying substrates (soybean, wheat, and rice) and inocula (Aspergillus oryzae and Bacillus amyloliquefaciens) on metabolite compositions of koji, a starter ingredient in various Asian fermented foods. Multivariate analyses of the hyphenated mass spectrometry datasets for different koji extracts highlighted 61 significantly discriminant primary metabolites (sugars and sugar alcohols, organic acids, amino acids, fatty acids, nucleosides, phenolic acids, and vitamins) according to varying substrates and inocula combinations. However, 59 significantly discriminant secondary metabolites were evident for koji-types with varying substrates only, viz., soybean (flavonoids, soyasaponins, and lysophospholipids), wheat (flavones and lysophospholipids), and rice (flavonoids, fatty acids derivatives, and lysophospholipids). Independently, the substrates influenced primary metabolite compositions in koji (soybean > wheat, rice). The inocula choice of A. oryzae engendered higher carbohydrates, organic acids, and lipid derivative levels commensurate with high α-amylase and ß-glucosidase activities, while B. amyloliquefaciens affected higher amino acids levels, in respective koji types.


Asunto(s)
Aspergillus oryzae/metabolismo , Bacillus amyloliquefaciens/metabolismo , Glycine max/metabolismo , Metabolómica , Oryza/metabolismo , Triticum/metabolismo , Aminoácidos/análisis , Carbohidratos/análisis , Cromatografía Líquida de Alta Presión , Flavonoides/análisis , Cromatografía de Gases y Espectrometría de Masas , Concentración de Iones de Hidrógeno , Hidroxibenzoatos/análisis , Análisis de Componente Principal , Vitaminas/análisis , alfa-Amilasas/metabolismo , beta-Glucosidasa/metabolismo
6.
J Microbiol Biotechnol ; 28(8): 1260-1269, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30301311

RESUMEN

Production of good Koji primarily depends upon the selection of substrate materials and fermentative microflora, which together influence the characteristic flavor and aroma. Herein, we performed comparative metabolomic analyses of volatile organic compounds (VOCs) and primary metabolites for Koji samples fermented individually with Bacillus amyloliquefaciens and Aspergillus oryzae. The VOCs and primary metabolites were analyzed using headspace solid phase microextraction (HS-SPME) followed by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). In particular, alcohols, ketones, and furans were mainly detected in Bacillus-fermented Koji (Bacillus Koji, BK), potentially due to the increased levels of lipid oxidation. A cheesy and rancid flavor was characteristic of Bacillus Koji, which is attributable to high content of typical 'off-flavor' compounds. Furthermore, the umami taste engendered by 2-methoxyphenol, (E,E)-2,4-decadienal, and glutamic acid was primarily detected in Bacillus Koji. Alternatively, malty flavor compounds (2-methylpropanal, 2-methylbutanal, 3-methylbutanal) and sweet flavor compounds (monosaccharides and maltol) were relatively abundant in Aspergillus-fermented Koji (Aspergillus Koji, AK). Hence, we argue that the VOC profile of Koji is largely determined by the rational choice of inocula, which modifies the primary metabolomes in Koji substrates, potentially shaping its volatolome as well as the aroma characteristics.


Asunto(s)
Aspergillus oryzae/metabolismo , Bacillus amyloliquefaciens/metabolismo , Fermentación , Aromatizantes/análisis , Compuestos Orgánicos Volátiles/análisis , Antioxidantes/metabolismo , Aromatizantes/química , Cromatografía de Gases y Espectrometría de Masas , Redes y Vías Metabólicas , Metabolómica/métodos , Microextracción en Fase Sólida , Glycine max/metabolismo , Factores de Tiempo , Triticum/metabolismo , Compuestos Orgánicos Volátiles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA