Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(3): 1948-1957, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38207107

RESUMEN

Ionic movement has received renewed attention in recent years, particularly in the field of ferroelectric oxides, since it is intrinsically linked to chemical reaction kinetics and ferroelectric phase stability. The associated surface electrochemical processes coupled local ionic transport with an applied electric bias, exhibiting very high ionic mobility at room temperature based on a simple electrostatics scenario. However, few studies have focused on the applied-polarity dependence of ionic migration with directly visualized maps. Here, we use incorporated experiments of conductive scanning probe microscopy and time-of-flight secondary ion mass spectrometry to investigate oxygen ionic migration and cation redistribution in ionic oxides. The local concentrations of oxygen vacancies and other cation species are visualized by three-dimensional mappings, indicating that oxygen vacancies tend to be ejected toward the surface. An accumulation of oxygen vacancies and ionic redistribution strongly depend on tip polarity, thus corroborating their role in the electrochemical process. This work illustrates the interplay between ionic kinetics and electric switching.

2.
Nat Commun ; 14(1): 5605, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699895

RESUMEN

We investigate the voltage control of magnetism in a van der Waals (vdW) heterostructure device consisting of two distinct vdW materials, the ferromagnetic Fe3-xGeTe2 and the ferroelectric In2Se3. It is observed that gate voltages applied to the Fe3-xGeTe2/In2Se3 heterostructure device modulate the magnetic properties of Fe3-xGeTe2 with significant decrease in coercive field for both positive and negative voltages. Raman spectroscopy on the heterostructure device shows voltage-dependent increase in the in-plane In2Se3 and Fe3-xGeTe2 lattice constants for both voltage polarities. Thus, the voltage-dependent decrease in the Fe3-xGeTe2 coercive field, regardless of the gate voltage polarity, can be attributed to the presence of in-plane tensile strain. This is supported by density functional theory calculations showing tensile-strain-induced reduction of the magnetocrystalline anisotropy, which in turn decreases the coercive field. Our results demonstrate an effective method to realize low-power voltage-controlled vdW spintronic devices utilizing the magnetoelectric effect in vdW ferromagnetic/ferroelectric heterostructures.

3.
Nat Commun ; 11(1): 4898, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994411

RESUMEN

The emergence of a domain wall property that is forbidden by symmetry in bulk can offer unforeseen opportunities for nanoscale low-dimensional functionalities in ferroic materials. Here, we report that the piezoelectric response is greatly enhanced in the ferroelastic domain walls of centrosymmetric tungsten trioxide thin films due to a large strain gradient of 106 m-1, which exists over a rather wide width (~20 nm) of the wall. The interrelationship between the strain gradient, electric polarity, and the electromechanical property is scrutinized by detecting of the lattice distortion using atomic scale strain analysis, and also by detecting the depolarized electric field using differential phase contrast technique. We further demonstrate that the domain walls can be manipulated and aligned in specific directions deterministically using a scanning tip, which produces a surficial strain gradient. Our findings provide the comprehensive observation of a flexopiezoelectric phenomenon that is artificially controlled by externally induced strain gradients.

4.
Light Sci Appl ; 8: 120, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31871672

RESUMEN

The direct emission of circularly polarized (CP) light improves the efficiency of an organic light-emitting diode and characterizes the secondary structure of proteins. In most cases, CP light is generated from a luminescent layer containing chiral characteristics, thereby generating only one kind of CP light in an entire device. Here, we propose direct CP light emissions using a twisted achiral conjugate polymer without any chiral dopant as an emitting layer (EML). The twisted structure is induced in the mesogenic conjugate polymer due to its elasticity by applying different alignment directions to its upper and lower interfaces. Furthermore, we demonstrate the simultaneous emission of orthogonal CP light in a single luminescent device by patterning different alignment directions on the surfaces of the EML. The light source with multipolarization including the orthogonal CP states is applicable to many applications in biosensors and optical devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...