Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Gen Physiol ; 156(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38226948

RESUMEN

During chronic stress, persistent activation of cAMP-dependent protein kinase (PKA) occurs, which can contribute to protective or maladaptive changes in the heart. We sought to understand the effect of persistent PKA activation on NaV1.5 channel distribution and function in cardiomyocytes using adult rat ventricular myocytes as the main model. PKA activation with 8CPT-cAMP and okadaic acid (phosphatase inhibitor) caused an increase in Na+ current amplitude without altering the total NaV1.5 protein level, suggesting a redistribution of NaV1.5 to the myocytes' surface. Biotinylation experiments in HEK293 cells showed that inhibiting protein trafficking from intracellular compartments to the plasma membrane prevented the PKA-induced increase in cell surface NaV1.5. Additionally, PKA activation induced a time-dependent increase in microtubule plus-end binding protein 1 (EB1) and clustering of EB1 at myocytes' peripheral surface and intercalated discs (ICDs). This was accompanied by a decrease in stable interfibrillar microtubules but an increase in dynamic microtubules along the myocyte surface. Imaging and coimmunoprecipitation experiments revealed that NaV1.5 interacted with EB1 and ß-tubulin, and both interactions were enhanced by PKA activation. We propose that persistent PKA activation promotes NaV1.5 trafficking to the peripheral surface of myocytes and ICDs by providing dynamic microtubule tracks and enhanced guidance by EB1. Our proposal is consistent with an increase in the correlative distribution of NaV1.5, EB1, and ß-tubulin at these subcellular domains in PKA-activated myocytes. Our study suggests that persistent PKA activation, at least during the initial phase, can protect impulse propagation in a chronically stressed heart by increasing NaV1.5 at ICDs.


Asunto(s)
Miocitos Cardíacos , Canal de Sodio Activado por Voltaje NAV1.5 , Proteínas Quinasas , Tubulina (Proteína) , Animales , Humanos , Ratas , Membrana Celular , Análisis por Conglomerados , Células HEK293 , Proteínas Quinasas/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo
2.
J Mol Cell Cardiol ; 155: 1-9, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33636221

RESUMEN

High-throughput experiments suggest that almost 20% of human proteins may be S-palmitoylatable, a post-translational modification (PTM) whereby fatty acyl chains, most commonly palmitoyl chain, are linked to cysteine thiol groups that impact on protein trafficking, distribution and function. In human, protein S-palmitoylation is mediated by a group of 23 palmitoylating 'Asp-His-His-Cys' domain-containing (DHHC) enzymes. There is no information on the scope of protein S-palmitoylation, or the pattern of DHHC enzyme expression, in the heart. We used resin-assisted capture to pull down S-palmitoylated proteins from human, dog, and rat hearts, followed by proteomic search to identify proteins in the pulldowns. We identified 454 proteins present in at least 2 species-specific pulldowns. These proteins are operationally called 'cardiac palmitoylome'. Enrichment analysis based on Gene Ontology terms 'cellular component' indicated that cardiac palmitoylome is involved in cell-cell and cell-substrate junctions, plasma membrane microdomain organization, vesicular trafficking, and mitochondrial enzyme organization. Importantly, cardiac palmitoylome is uniquely enriched in proteins participating in the organization and function of t-tubules, costameres and intercalated discs, three microdomains critical for excitation-contraction coupling and intercellular communication of cardiomyocytes. We validated antibodies targeting DHHC enzymes, and detected eleven of them expressed in hearts across species. In conclusion, we provide resources useful for investigators interested in studying protein S-palmitoylation and its regulation by DHHC enzymes in the heart. We also discuss challenges in these efforts, and suggest methods and tools that should be developed to overcome these challenges.


Asunto(s)
Aciltransferasas/metabolismo , Miocardio/metabolismo , Proteoma , Proteómica , Aciltransferasas/genética , Animales , Células COS , Chlorocebus aethiops , Cromatografía Liquida , Biología Computacional/métodos , Regulación Enzimológica de la Expresión Génica , Humanos , Isoenzimas , Lipoilación , Miocardio/enzimología , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Ratas , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...