Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Technol Adv Mater ; 22(1): 135-140, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33795973

RESUMEN

To understand the mechanism of FCC-HCP martensitic transformation, we applied electron channeling contrast imaging under cooling to -51°C and subsequent heating to 150°C. The stacking faults were randomly extended and aggregated during cooling. The stacking fault aggregates were indexed as HCP. Furthermore, the shrink of stacking faults due to reverse motion of Shockley partials was observed during heating, but some SFs remained even after heating to the finishing temperature for reverse transformation (Af: 104°C). This fact implies that the chemical driving force of the FCC/HCP phases does not contribute to the motion of a single SF but works for group motion of stacking faults.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...