Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 14: 1055991, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36713839

RESUMEN

Introduction: Most hepatically cleared drugs are metabolized by cytochromes P450 (CYPs), and Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines provide curated clinical references for CYPs to apply individual genome data for optimized drug therapy. However, incorporating novel pharmacogenetic variants into guidelines takes considerable time. Methods: We comprehensively assessed the drug metabolizing capabilities of CYP2C19 variants discovered through population sequencing of two substrates, S-mephenytoin and omeprazole. Results: Based on established functional assays, 75% (18/24) of the variants not yet described in Pharmacogene Variation (PharmVar) had significantly altered drug metabolizing capabilities. Of them, seven variants with inappreciable protein expression were evaluated as protein damaging by all three in silico prediction algorithms, Sorting intolerant from tolerant (SIFT), Polymorphism Phenotyping v2 (PolyPhen-2), and Combined annotation dependent depletion (CADD). The five variants with decreased metabolic capability (<50%) of wild type for either substrates were evaluated as protein damaging by all three in silico prediction algorithms, except CADD exact score of NM_000769.4:c.593T>C that was 19.68 (<20.0). In the crystal structure of the five polymorphic proteins, each altered residue of all those proteins was observed to affect the key structures of drug binding specificity. We also identified polymorphic proteins indicating different tendencies of metabolic capability between the two substrates (5/24). Discussion: Therefore, we propose a methodology that combines in silico prediction algorithms and functional assays on polymorphic CYPs with multiple substrates to evaluate the changes in the metabolism of all possible genomic variants in CYP genes. The approach would reinforce existing guidelines and provide information for prescribing appropriate medicines for individual patients.

2.
J Korean Med Sci ; 37(5): e33, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35132839

RESUMEN

BACKGROUND: Tacrolimus is the most commonly used immunosuppressive drug in solid organ transplantation. After administering a conventional twice-daily dose of tacrolimus, peak levels were achieved within the first 1.5 to 2 hours. A group of patients showed different early absorption phase of tacrolimus after kidney transplantation. METHODS: Trough(C0) and 1.5-hour blood levels (C1.5) of tacrolimus were measured in 95 kidney transplantation recipients. Patients with a C1.5/C0 < 1.5 and > 1.5 were defined as those having flat pattern peaks and as controls, respectively. Transplantation outcomes were compared between the groups. Whole exome sequencing was performed to investigate the genetic susceptibility to flat pattern peaks. RESULTS: Twenty-eight patients showed flat pattern peaks. The mean C1.5/C0 values were 1.13 ± 0.22 and 3.78 ± 1.25 in the flat pattern peak and control groups, respectively. In multivariate analysis, flat pattern peak was an independent risk factor for biopsy-proven acute rejection (BPAR) and/or borderline change (P = 0.014). Patients having flat pattern peaks showed significantly lower post-transplant 36-month estimated glomerular filtration rate (P = 0.001). Two single nucleotide variants in ABCB1 genes, rs1922242 and rs2235035, were associated with flat pattern peaks (P = 0.019 and P = 0.027, respectively). CONCLUSION: Both of C1.5 and C0 should be measured to distinguish the patients showing unique initial absorption. A C1.5/C0 ratio lower than 1.5 was associated with an increased risk of BPAR and/or borderline change. Single nucleotide variants s in ABCB1 gene might influence the flat pattern peaks of tacrolimus absorption.


Asunto(s)
Trasplante de Riñón , Variantes Farmacogenómicas , Tacrolimus/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tacrolimus/administración & dosificación
3.
Cancers (Basel) ; 13(20)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34680263

RESUMEN

Recently, several panels using two representative targeting methods have been developed but they do not reflect racial specificity, especially for Asians. We have developed and analytically validated the Korean Pan-cancer Companion Diagnostic (CDX) Panel to apply targeted anticancer drugs to Korean patients based on the molecular characteristics of tumors using tumor samples without matched patient normal samples. The panel included 31 genes with reported single nucleotide variants, 9 genes with reported copy number variations, and 15 genes with predictive responses to targeted drugs under clinical testing, enabling the panel to be analyzed for the targets of 30 targeted anticancer drugs. It is cost-effective and optimized for cancer type-specific therapy in Korean cancer patients across solid cancer types while minimizing the limitations of existing approaches. In addition, the optimized filtering protocol for somatic variants from tumor-only samples enables researchers to use this panel without matched normal samples. To verify the panel, 241 frozen tumor tissues and 71 formalin-fixed paraffin-embedded (FFPE) samples from several institutes were registered. This gene screening method is expected to reduce test turnaround time and cost, making it a balanced approach to investigate solid cancer-related gene regions.

4.
Spine J ; 21(11): 1847-1856, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34273568

RESUMEN

BACKGROUND CONTEXT: Ossification of the posterior longitudinal ligament (OPLL) in the cervical spine is known as a rare, complex genetic disease, its complexity being partly because OPLL is diagnosed by radiological findings regardless of clinical or genetic evaluations. Although many genes associated with susceptibility have been reported, the exact causative genes are still unknown. PURPOSE: We performed an analysis using next-generation sequencing and including only patients with a clear involved phenotype. STUDY DESIGN/SETTING: This was a case control study. PATIENT SAMPLE: A total of 74 patients with severe OPLL and 26 healthy controls were included. OUTCOME MEASURES: Causal single-nucleotide variant (SNV), gene-wise variant burden (GVB), and related pathway METHOD: We consecutively included the severe OPLL patients with continuous-/mixed-type and an occupying ratio of ≥ 40%, and performed whole-exome sequencing (WES) and bioinformatic analysis. Then, a validation test was performed for candidate variations. Participants were divided into 4 groups (rapidly-growing OPLL, growing rate ≥ 2.5%/y; slow-growing, < 2.5%/y; uncertain; and control). RESULTS: WES was performed on samples from 74 patients with OPLL (rapidly-growing, 33 patients; slow-growing, 37; and uncertain, 4) with 26 healthy controls. Analysis of 100 participants identified a newly implicated SNV and 4candidate genes based on GVB. The GVB of CYP4B1 showed a more deleterious score in the OPLL than the control group. Comparison between the rapidly growing OPLL and control groups revealed seven newly identified SNVs. We found significant association for 2 rare missense variants; rs121502220 (odds ratio [OR] = infinite; minor allele frequency [MAF] = 0.034) in NLRP1 and rs13980628 (OR= infinite; MAF = 0.032) in SSH2. The 3 genes are associated with inflammation control and arthritis, and SSH2 and NLRP1 are also related to vitamin D modulation. CONCLUSIONS: Identification of unique variants in novel genes such as CYP4B1 gene may induce the development of OPLL. In subgroup analysis, NLRP1 and SSH2 genes coding inflammation molecules may related with rapidly-growing OPLL.


Asunto(s)
Ligamentos Longitudinales , Osificación del Ligamento Longitudinal Posterior , Estudios de Casos y Controles , Vértebras Cervicales , Biología Computacional , Variación Genética , Humanos , Osificación del Ligamento Longitudinal Posterior/diagnóstico por imagen , Osificación del Ligamento Longitudinal Posterior/genética , Osteogénesis , Secuenciación del Exoma
5.
J Transl Med ; 18(1): 265, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611418

RESUMEN

BACKGROUND: NUDT15 and TPMT variants are strong genetic determinants of thiopurine-induced hematological toxicity that results in therapeutic failure in pediatric acute lymphoblastic leukemia (ALL). However, many patients with both wild-type (WT) NUDT15 and TPMT still suffer from thiopurine toxicity and therapeutic failure. METHODS: Whole-exome sequencing was done for discovery (N = 244) and replication (N = 76) cohorts. Age- and sex-adjusted multiple regression analyses of both WT patients were performed to identify (p < 0.01, N = 188 for discovery) and validate (p < 0.05, N = 52 for replication) candidate variants for the tolerated last-cycle 6-mercaptopurine (6-MP) dose intensity percentage (DIP). Both independent and additive effects of the candidate variants on well-known NUDT15 and TPMT were evaluated by multigene prediction models. RESULTS: Among the 12 candidate variants from the discovery phase, the rs3821169 variant of the gene encoding Cysteine-Rich Transmembrane BMP Regulator 1 (CRIM1) was successfully replicated (p < 0.05). It showed high interethnic variability with an impressively high allele frequency in East Asians (T = 0.255) compared to Africans (0.001), Americans (0.02), Europeans (0.009), and South Asians (0.05). Homozygote carriers of the CRIM1 rs3821169 variant (N = 12, 5%) showed significantly lower last-cycle 6-MP DIPs in the discovery, replication, and combined cohorts (p = 0.025, 0.013, and 0.001, respectively). The traditional two-gene model (NUDT15 and TPMT) for predicting 6-MP DIP < 25% was outperformed by the three-gene model that included CRIM1, in terms of the area under the receiver operating characteristic curve (0.734 vs. 0.665), prediction accuracy (0.759 vs. 0.756), sensitivity (0.636 vs. 0.523), positive predictive value (0.315 vs. 0.288), and negative predictive value (0.931 vs. 0.913). CONCLUSIONS: The CRIM1 rs3821169 variant is suggested to be an independent and/or additive genetic determinant of thiopurine toxicity beyond NUDT15 and TPMT in pediatric ALL.


Asunto(s)
Neutropenia , Pirofosfatasas , Receptores de Proteínas Morfogenéticas Óseas , Niño , Homocigoto , Humanos , Mercaptopurina/efectos adversos , Metiltransferasas/genética , Pirofosfatasas/genética
6.
Clin Orthop Relat Res ; 478(11): 2442-2450, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32281771

RESUMEN

BACKGROUND: Schwannomatosis is a late-onset tumor predisposition syndrome associated with the development of many different types of malignancies. A relevant genetic mechanism can be explained by three mutational events. The first-hit mutation is a germline mutation, and the SMARCB1 mutation on chromosome 22 is the most well-known genetic abnormality in patients with schwannomatosis. LZTR1 is another major predisposing gene in 22q-related schwannomatosis that lacks SMARCB1 variants. Although these two variants account for the occurrence of most familiar schwannomatoses, the genetic causes of sporadic schwannomatosis for the most part remain unknown. Therefore, current molecular diagnostic criteria cannot completely explain the basis of this disease. The common genetic background between schwannomatosis and other related malignant tumors is also unclear. Moreover, it is not easy to explain various clinical manifestations by only two known mutations. QUESTION/PURPOSES: (1) Are there important sequences outside the SMARCB1 or LZTR1 region on chromosome 22 that might carry a first-hit mutational predisposition to sporadic schwannomatosis? Or are there alternative evolutionarily conserved loci that might carry a first-hit mutational predisposition? (2) Is the age of disease onset associated to such genetic variants? METHODS: This study was a retrospective chart review and prospective genetic study on patients with schwannomatosis who were treated surgically. The clinical criteria to diagnose schwannomatosis were as follows: (1) histologically proven nonvestibular schwannomas; (2) no evidence of vestibular schwannomas on 3-mm brain MRI. A total of 21 patients were treated between March 2006 and June 2015. Since nine patients did not visit the outpatient clinic during the recruitment period, we obtained blood samples from 12 patients with schwannomatosis for a genetic analysis. After two patients were excluded because of their family history of schwannomatosis, genetic analyses were finally performed on 10 patients. Then, those with NF2, SMARCB1 or LZTR1 variants were screened by whole exome sequencing. All 10 patients passed our screening strategy. There were eight men and two women, with a median (range) age of 43 years (24 to 66) at the time of diagnosis. To select candidate genes, common ethnic variants and frequent mutations in in-house exome sequencing data were removed to exclude the population-specific polymorphisms not found in other population and to generalize the findings. Frameshift, nonsense, and splice-site variants were deemed pathogenic. Missense variants were classified as potentially pathogenic, variants of uncertain significance, or benign using in silico (via computer simulation) prediction algorithms, Sorting Intolerant From Tolerant (SIFT), Polymorphism Phenotyping v2 (PolyPhen-2), and Combined Annotation Dependent Depletion (CADD). A variant was considered potentially pathogenic if two or more algorithms predicted the variant to be damaging and benign if none considered it damaging. Then, potentially pathogenic variants only in the genes associated with cancer-predisposition or DNA damage repair were classified as the pathogenic candidate variants of sporadic schwannomatosis. The predictions for pathogenic candidate variants were checked again on Clinical Interpretation of Genetic Variants (InterVar) based on the American College of Medical Genetics guidelines and validated against Mendelian clinically applicable pathogenicity scores (M-CAP scores). RESULTS: We detected 26 variants; 13 variants across 10 genes were predicted to be pathogenic and found in seven patients, two each in ARID1A, PTCH2, and NOTCH2 and one each in MSH6, ALPK2, MGMT, NOTCH1, CIC, TSC2, and CDKN2A. One frameshift deletion in PTCH2 met the criteria for pathogenic or likely pathogenic classification, as recommended by the American College of Medical Genetics guidelines. Six missense mutations were classified as possibly pathogenic variants based on M-CAP scores. Four predicted pathogenic missense variants were detected in DNA damage repair (DDR) genes. Three DDR genes were affected: ARID1A, MGMT, and MSH6. Among the nine predicted pathogenic mutations detected in known cancer-predisposing genes, one was a frameshift deletion and the others were missense mutations. Seven tumor suppressor genes were involved: PTCH2, ALPK2, CIC, NOTCH1, NOTCH2, TSC2, and CDKN2A. One patient with multiple pathogenic variants in two DDR genes, ARID1A and MSH6, received a schwannomatosis diagnosis at 33 years old. Each of the other patients who had single variants in the DDR gene received their diagnoses at 41 years of age. The age at diagnosis was 40 years or older in patients with variants in cancer-predisposing genes, except for one patient who had multiple variants in TSC2 and CDKN2A. The carrier of those variants received the diagnosis at 24 years old. CONCLUSIONS: This study identified first-hit candidate mutations predisposing patients to schwannomatosis that were not related to SMARCB1 or LZTR1 variations in a cohort of patients with sporadic schwannomatosis. Patients with sporadic schwannomatosis without SMARCB1 or LZTR1 genetic variation may have developed the disease because of genomic variants related to cancer initiation in areas other than chromosome 22. Seven of 10 patients had predicted pathogenic germline mutations in DDR and cancer predisposition genes. We detected multiple cancer-related mutations in each patient. The age at the time schwannomatosis was diagnosed might be associated with a combination of variants and characteristics of the genes containing the variants; however, we did not have enough patients to confirm this association. CLINICAL RELEVANCE: The germline mutations identified in this study and the ideas related to the age of disease onset may provide potential candidate variants for future research on sporadic schwannomatosis and help to revise the current clinical and molecular diagnostic criteria. Further in vivo and in vitro studies are needed for these variants.


Asunto(s)
Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Neurilemoma/genética , Neurilemoma/cirugía , Neurofibromatosis/genética , Neurofibromatosis/cirugía , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/cirugía , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Estudios Retrospectivos , Secuenciación del Exoma , Adulto Joven
7.
Front Pharmacol ; 10: 654, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244663

RESUMEN

Nudix Hydrolase 15 (NUDT15) and Thiopurine S-Methyltransferase (TPMT) are strong genetic determinants of thiopurine toxicity in pediatric acute lymphoblastic leukemia (ALL) patients. Since patients with NUDT15 or TPMT deficiency suffer severe adverse drug reactions, star (*) allele-based haplotypes have been used to predict an optimal 6-mercaptopurine (6-MP) dosing. However, star allele haplotyping suffers from insufficient, inconsistent, and even conflicting designations with uncertain and/or unknown functional alleles. Gene-wise variant burden (GVB) scoring enables us to utilize next-generation sequencing (NGS) data to predict 6-MP intolerance in children with ALL. Whole exome sequencing was performed for 244 pediatric ALL patients under 6-MP treatments. We assigned star alleles with PharmGKB haplotype set translational table. GVB for NUDT15 and TPMT was computed by aggregating in silico deleteriousness scores of multiple coding variants for each gene. Poor last-cycle dose intensity percent (DIP < 25%) was considered as 6-MP intolerance, resulting therapeutic failure of ALL. DIPs showed significant differences ( p < 0.05) among NUDT15 poor (PM, n = 1), intermediate (IM, n = 48), and normal (NM, n = 195) metabolizers. TPMT exhibited no PM and only seven IMs. GVB showed significant differences among the different haplotype groups of both NUDT15 and TPMT ( p < 0.05). Kruskal-Wallis test for DIP values showed statistical significances for the seven different GVB score bins of NUDT15. GVB NUDT15 outperformed the star allele-based haplotypes in predicting patients with reduced last-cycle DIPs at all DIP threshold levels (i.e., 5%, 10%, 15%, and 25%). In NUDT15-and-TPMT combined interaction analyses, GVB NUDT15 , TPMT outperformed star alleles [area under the receiver operating curve (AUROC) = 0.677 vs. 0.645] in specificity (0.813 vs. 0.796), sensitivity (0.526 vs. 0.474), and positive (0.192 vs. 0.164) and negative (0.953 vs. 0.947) predictive values. Overall, GVB correctly classified five more patients (i.e., one into below and four into above 25% DIP groups) than did star allele haplotypes. GVB analysis demonstrated that 6-MP intolerance in pediatric ALL can be reliably predicted by aggregating NGS-based common, rare, and novel variants together without hampering the predictive power of the conventional haplotype analysis.

8.
Cancer Res Treat ; 50(3): 823-834, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28882023

RESUMEN

PURPOSE: Mercaptopurine (MP) is one of the main chemotherapeutics for acute lymphoblastic leukemia (ALL). To improve treatment outcomes, constant MP dose titration is essential to maintain steady drug exposure, while minimizing myelosuppression. We performed two-stage analyses to identify genetic determinants of MP-related neutropenia in Korean pediatric ALL patients. MATERIALS AND METHODS: Targeted sequencing of 40 patients who exhibited definite MP intolerance was conducted using a novel panel of 211 pharmacogenetic-related genes, and subsequent analysis was performed with 185 patients. RESULTS: Using bioinformatics tools and genetic data, four functionally interesting variants were selected (ABCC4, APEX1, CYP1A1, and CYP4F2). Including four variants, 23 variants in 12 genes potentially linked to MP adverse reactions were selected as final candidates for subsequent analysis in 185 patients. Ultimately, a variant allele in APEX1 rs2307486was found to be strongly associated with MP-induced neutropenia that occurred within 28 days of initiating MP (odds ratio, 3.44; p=0.02). Moreover, the cumulative incidence of MP-related neutropenia was significantly higher in patients with APEX1 rs2307486 variants, as GG genotypes were associated with the highest cumulative incidence (p < 0.01). NUDT15 rs116855232 variants were strongly associated with a higher cumulative incidence of neutropenia (p < 0.01), and a lower median dose of tolerated MP throughout maintenance treatment (p < 0.01). CONCLUSION: We have identified that APEX1 rs2307486 variants conferred an increased risk of MP-related early onset neutropenia. APEX1 and NUDT15 both contribute to cell protection from DNA damage or misincorporation, so alleles that impair the function of either gene may affect MP sensitivities, thereby inducing MP-related neutropenia.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Mercaptopurina/efectos adversos , Neutropenia/genética , Polimorfismo de Nucleótido Simple , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Adolescente , Niño , Preescolar , Femenino , Genotipo , Humanos , Lactante , Masculino , Neutropenia/inducido químicamente , Oportunidad Relativa , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Análisis de Secuencia de ADN
9.
PLoS One ; 12(7): e0181304, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28742110

RESUMEN

The Ion Proton sequencer from Thermo Fisher accurately determines sequence variants from target regions with a rapid turnaround time at a low cost. However, misleading variant-calling errors can occur. We performed a systematic evaluation and manual curation of read-level alignments for the 675 ultrarare variants reported by the Ion Proton sequencer from 27 whole-exome sequencing data but that are not present in either the 1000 Genomes Project and the Exome Aggregation Consortium. We classified positive variant calls into 393 highly likely false positives, 126 likely false positives, and 156 likely true positives, which comprised 58.2%, 18.7%, and 23.1% of the variants, respectively. We identified four distinct error patterns of variant calling that may be bioinformatically corrected when using different strategies: simplicity region, SNV cluster, peripheral sequence read, and base inversion. Local de novo assembly successfully corrected 201 (38.7%) of the 519 highly likely or likely false positives. We also demonstrate that the two sequencing kits from Thermo Fisher (the Ion PI Sequencing 200 kit V3 and the Ion PI Hi-Q kit) exhibit different error profiles across different error types. A refined calling algorithm with better polymerase may improve the performance of the Ion Proton sequencing platform.


Asunto(s)
Exoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Algoritmos , Secuencia de Bases , Reacciones Falso Positivas , Sitios Genéticos , Genoma Humano , Humanos , Mutación INDEL , Polimorfismo de Nucleótido Simple , Alineación de Secuencia
10.
Eur J Med Genet ; 56(10): 561-5, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23832104

RESUMEN

Langer-Giedion syndrome (LGS; MIM 150230), also called trichorhinophalangeal syndrome type II (TRPS2), is a contiguous gene syndrome caused by a one-copy deletion in the chromosome 8q23-q24 region, spanning the genes TRPS1 and EXT1. We identified an LGS family with two affected and two unaffected siblings from unaffected parents. To investigate the etiology of recurrence of LGS in this family, array CGH was performed on all family members. We identified a 7.29 Mb interstitial deletion at chromosome region 8q23-q24 in the two affected siblings, but no such deletion in the unaffected family members. However, the mother and one of the two unaffected siblings carried a 1.29 Mb deletion at chromosome region 8q24.1, sharing the distal breakpoint with the larger deleted segment found in the affected siblings. Another unaffected sibling had a 6.0 Mb duplication, sharing the proximal breakpoint of the deletion in the affected siblings. Karyotypic and FISH analyses in the unaffected mother revealed an insertional translocation of 8q23-q24 genomic material into chromosome 13: 46,XX,ins(13;8)(q33;q23q24). This insertional translocation in the mother results in the recurrence of LGS in this family, highlighting the importance of submicroscopic rearrangements in the genetic counseling for LGS.


Asunto(s)
Síndrome de Langer-Giedion/genética , Mutagénesis Insercional , Cariotipo Anormal , Adolescente , Secuencia de Bases , Rotura Cromosómica , Cromosomas Humanos Par 8/genética , Hibridación Genómica Comparativa , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Humanos , Síndrome de Langer-Giedion/diagnóstico por imagen , Masculino , Polimorfismo de Nucleótido Simple , Radiografía , Eliminación de Secuencia , Adulto Joven
11.
Am J Hum Genet ; 89(6): 760-6, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22152677

RESUMEN

Spondyloepimetaphyseal dysplasia with joint laxity (SEMDJL), leptodactylic (lepto-SEMDJL) or Hall type, is an autosomal-dominant skeletal dysplasia manifesting with short stature, joint laxity with dislocation(s), limb malalignment, and spinal deformity. Its causative gene mutation has not yet been discovered. We captured and sequenced the exomes of eight affected individuals in six unrelated kindreds (three individuals in a family and five simplex individuals). Five novel sequence variants in KIF22, which encodes a member of the kinesin-like protein family, were identified in seven individuals. Sanger sequencing of KIF22 confirmed that c.443C>T (p.Pro148Ser) cosegregated with the phenotype in the affected individuals in the family; c.442C>T (p.Pro148Leu) or c.446G>A (p.Arg149Gln) was present in four of five simplex individuals, but was absent in unaffected individuals in their family and 505 normal cohorts. KIF22 mRNA was detected in human bone, cartilage, joint capsule, ligament, skin, and primary cultured chondrocytes. In silico analysis of KIF22 protein structure indicates that Pro148 and Arg149 are important in maintaining hydrogen bonds in the ATP binding and motor domains of KIF22. We conclude that these mutations in KIF22 cause lepto-SEMDJL.


Asunto(s)
Anomalías Múltiples/genética , Proteínas de Unión al ADN/genética , Exoma , Luxaciones Articulares/congénito , Inestabilidad de la Articulación/genética , Cinesinas/genética , Mutación Missense , Osteocondrodisplasias/genética , Análisis de Secuencia de ADN , Adolescente , Secuencias de Aminoácidos , Animales , Estudios de Casos y Controles , Niño , Preescolar , Proteínas de Unión al ADN/química , Femenino , Expresión Génica , Estudios de Asociación Genética , Genotipo , Humanos , Luxaciones Articulares/genética , Cinesinas/química , Masculino , Ratones , Persona de Mediana Edad , Simulación de Dinámica Molecular , Especificidad de Órganos , Linaje , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...