Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cells ; 12(23)2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067126

RESUMEN

Tissue regeneration is an essential requirement for wound healing and recovery of organs' function. It has been demonstrated that wound healing can be facilitated by activating paracrine signaling mediated by exosomes secreted from stem cells, since exosomes deliver many functional molecules including growth factors (GFs) and neurotrophic factors (NFs) effective for tissue regeneration. In this study, an exosome-rich conditioned medium (ERCM) was collected from human amniotic membrane stem cells (AMSCs) by cultivating the cells under a low oxygen tension (2% O2 and 5% CO2). The contents of GFs and NFs including keratinocyte growth factor, epidermal growth factor, fibroblast growth factor 1, transforming growth factor-ß, and vascular endothelial growth factor responsible for skin regeneration were much higher (10-30 folds) in the ERCM than in normal conditioned medium (NCM). In was found that CM-DiI-labeled exosomes readily entered keratinocytes and fibroblasts, and that ERCM not only facilitated the proliferation of keratinocytes in normal condition, but also protected against H2O2 cytotoxicity. In cell-migration assay, the scratch wound in keratinocyte culture dish was rapidly closed by treatment with ERCM. Such wound-healing effects of ERCM were confirmed in a rat whole skin-excision model: i.e., the wound closure was significantly accelerated, remaining minimal crusts, by topical application of ERCM solution (4 × 109 exosome particles/100 µL) at 4-day intervals. In the wounded skin, the deposition of collagens was enhanced by treatment with ERCM, which was supported by the increased production of collagen-1 and collagen-3. In addition, enhanced angiogenesis in ERCM-treated wounds was confirmed by increased von Willebrand factor (vWF)-positive endothelial cells. The results indicate that ERCM from AMSCs with high concentrations of GFs and NFs improves wound healing through tissue regeneration not only by facilitating keratinocyte proliferation for skin repair, but also activating fibroblasts for extracellular matrix production, in addition to the regulation of angiogenesis and scar tissue formation.


Asunto(s)
Células Endoteliales , Exosomas , Humanos , Ratas , Animales , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Células Endoteliales/metabolismo , Exosomas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Amnios/metabolismo , Angiogénesis , Peróxido de Hidrógeno/farmacología , Cicatrización de Heridas/fisiología , Células Madre , Colágeno/farmacología , Factor de Crecimiento Epidérmico/farmacología
2.
Nutrients ; 15(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37242259

RESUMEN

Oxidative stress and inflammation are basic pathogenic factors involved in tissue injury and pain, as well as acute and chronic diseases. Since long-term uses of synthetic steroids and non-steroidal anti-inflammatory drugs (NSAIDs) cause severe adverse effects, novel effective materials with minimal side effects are required. In this study, polyphenol content and antioxidative activity of rosebud extracts from 24 newly crossbred Korean roses were analyzed. Among them, Pretty Velvet rosebud extract (PVRE) was found to contain high polyphenols and to show in vitro antioxidative and anti-inflammatory activities. In RAW 264.7 cells stimulated with lipopolysaccharide (LPS), PVRE down-regulated mRNA expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and thereby decreased nitric oxide (NO) and prostaglandin E2 (PGE2) production. In a subcutaneous air-pouch inflammation model, treatment with PVRE decreased λ-carrageenan-induced tissue exudation, infiltration of inflammatory cells, and inflammatory cytokines such as tumor necrosis factor-α and interleukin-1ß concentrations, as achieved with dexamethasone (a representative steroid). Notably, PVRE also inhibited PGE2, similar to dexamethasone and indomethacin (a representative NSAID). The anti-inflammatory effects of PVRE were confirmed by microscopic findings, attenuating tissue erythema, edema, and inflammatory cell infiltration. These results indicate that PVRE exhibits dual (steroid- and NSAID-like) anti-inflammatory activities by blocking both the iNOS-NO and COX-2-PG pathways, and that PVRE could be a potential candidate as an anti-inflammatory material for diverse tissue injuries.


Asunto(s)
Antioxidantes , Extractos Vegetales , Humanos , Extractos Vegetales/uso terapéutico , Ciclooxigenasa 2/metabolismo , Antioxidantes/uso terapéutico , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Antiinflamatorios no Esteroideos/uso terapéutico , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Dexametasona/efectos adversos , Óxido Nítrico/metabolismo , Lipopolisacáridos/farmacología
3.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37175778

RESUMEN

Glaucoma is one of the most devastating eye diseases, since the disease can develop into blindness and no effective therapeutics are available. Although the exact mechanisms and causes of glaucoma are unknown, increased intraocular pressure (IOP) has been demonstrated to be an important risk factor. Exosomes are lipid nanoparticles secreted from functional cells, including stem cells, and have been found to contain diverse functional molecules that control body function, inhibit inflammation, protect and regenerate cells, and restore damaged tissues. In the present study, exosome-rich conditioned media (ERCMs) were attained via hypoxic culture (2% O2) of human amniotic membrane mesenchymal stem cells (AMMSCs) and amniotic membrane epithelial stem cells (AMESCs) containing 50 times more exosome particles than normoxic culture (20% O2) medium (NCM). The exosome particles in ERCM were confirmed to be 77 nm in mean size and contain much greater amounts of growth factors (GFs) and neurotrophic factors (NFs) than those in NCM. The glaucoma-therapeutic effects of ERCMs were assessed in retinal cells and a hypertonic (1.8 M) saline-induced high-IOP animal model. CM-DiI-labeled AMMSC exosomes were found to readily penetrate the normal and H2O2-damaged retinal ganglion cells (RGCs), and AMMSC-ERCM not only facilitated retinal pigment epithelial cell (RPEC) proliferation but also protected against H2O2- and hypoxia-induced RPEC insults. The IOP of rats challenged with 1.8 M saline increased twice the normal IOP (12-17 mmHg) in a week. However, intravitreal injection of AMMSC-ERCM or AMESC-ERCM (3.9-4.5 × 108 exosomes in 10 µL/eye) markedly recovered the IOP to normal level in 2 weeks, similar to the effect achieved with platelet-derived growth factor-AB (PDGF-AB, 1.5 µg), a reference material. In addition, AMMSC-ERCM, AMESC-ERCM, and PDGF-AB significantly reversed the shrinkage of retinal layers, preserved RGCs, and prevented neural injury in the glaucoma eyes. It was confirmed that stem cell ERCMs containing large numbers of functional molecules such as GFs and NFs improved glaucoma by protecting retinal cells against oxidative and hypoxic injuries in vitro and by recovering IOP and retinal degeneration in vivo. Therefore, it is suggested that stem cell ERCMs could be a promising candidate for the therapy of glaucoma.


Asunto(s)
Exosomas , Glaucoma , Ratas , Humanos , Animales , Presión Intraocular , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Exosomas/metabolismo , Amnios/metabolismo , Peróxido de Hidrógeno/metabolismo , Glaucoma/metabolismo , Retina/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Células Madre/metabolismo , Modelos Animales de Enfermedad
4.
J Ginseng Res ; 46(5): 683-689, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36090679

RESUMEN

Background: Since ginsenosides exert an anti-thrombotic activity, blood flow-improving effects of DK-MGAR101, an extract of mountain ginseng adventitious roots (MGAR) containing various ginsenosides, were investigated in comparison with an extract of Korean Red Ginseng (ERG). Methods: In Sprague-Dawley rats orally administered with DK-MGAR101 or ERG, oxidative carotid arterial thrombosis was induced with FeCl3 (35%), and their blood flow and occlusion time were measured. To elucidate underlying mechanisms, the cytoprotective activities on rat aortic endothelial cells (RAOECs) exposed to hydrogen peroxide (H2O2) were confirmed. In addition, the inhibitory activities of DK-MGAR101 and ERG on agonist-induced platelet aggregation, thromboxane B2 production, and ATP granule release from stimulated platelets as well as blood coagulation were analyzed. Results: DK-MGAR101 containing high concentrations of Rb1, Rg1, Rg3, Rg5, and Rk1 ginsenosides (55.07 mg/g) was more effective than ERG (ginsenosides 8.45 mg/g) in protecting RAOECs against H2O2 cytotoxicity. DK-MGAR101 was superior to ERG not only in suppressing platelet aggregation, thromboxane B2 production, and granule release, but also in delaying blood coagulation, FeCl3-induced arterial occlusion, and thrombus formation. Conclusions: The results indicate that DK-MGAR101 prevents blood vessel occlusion by suppressing platelet aggregation, thrombosis, and blood coagulation, in addition to endothelial cell injury.

5.
Cell Transplant ; 30: 9636897211035409, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34318707

RESUMEN

Stamina-enhancing effects of human adipose derived stem cells (hADSCs) were investigated in young Sprague-Dawley rats. Ten-day-old male rats were transplanted intravenously (IV) or intracerebroventricularly (ICV) with hADSCs (1 × 106 cells/rat), and physical activity was measured by locomotor activity and rota-rod performance at post-natal day (PND) 14, 20, 30, and 40, as well as a forced swimming test at PND 41. hADSCs injection increased the moving time in locomotor activity, the latency in rota-rod performance, and the maximum swimming time. For the improvement of physical activity, ICV transplantation was superior to IV injection. In biochemical analyses, ICV transplantation of hADSCs markedly reduced serum creatine phosphokinase, lactate dehydrogenase, alanine transaminase, and muscular lipid peroxidation, the markers for muscular and hepatic injuries, despite the reduction in muscular glycogen and serum triglycerides as energy sources. Notably, hADSCs secreted brain-derived neurotrophic factor (BDNF) and nerve growth factor in vitro, and increased the level of BDNF in the brain and muscles in vivo. The results indicate that hADSCs enhance physical activity including stamina not only by attenuating tissue injury, but also by strengthening the muscles via production of BDNF.


Asunto(s)
Tejido Adiposo/metabolismo , Células Madre/metabolismo , Animales , Diferenciación Celular , Humanos , Masculino , Condicionamiento Físico Animal , Ratas , Ratas Sprague-Dawley
6.
Artículo en Inglés | MEDLINE | ID: mdl-28843503

RESUMEN

TALLYHO/Jng (TH) mice reveal hypercholesterolemia at an early age before their plasma glucose levels have increased. The increased plasma cholesterol should be related to bile acids (BAs) metabolism, because cholesterol is the precursor of BAs and BAs change cholesterol metabolism in a feedback manner. We analyzed the BAs pool size, BAs composition, and expression levels of several proteins that have key roles in BAs synthesis, excretion, and reabsorption and compared them to those of C57BL/6 (B6) mice to study BAs metabolism in TH mice. TH mice exhibited an increased total BAs pool size, increased BAs content in the cecum feces, and an increased ratio of muricholic acid (MCA)/cholic acid (CA). The mRNA and protein levels of cholesterol 7 alpha-hydroxylase (Cyp7a1) and the ATP-binding cassette sub-family G member 5 (Abcg5) were elevated in the liver but not in the apical sodium bile acid transporter (Asbt) and organic solute transporters (Osts) in the ileum. These results indicate that synthesis and the excretion of BAs from the liver to the gallbladder might be elevated, but the reabsorption rate of BAs in the ileum might be reduced. The declined expression of fibroblast growth factor 15 (Fgf15) and fibroblast growth factor receptor 4 (Fgfr4) was respectively identified in the ileum and the liver, indicating the disrupted feedback inhibition of Cyp7a1. Consequently, hypercholesterolemia in TH mice might increase the BAs amounts via the interrupted Fxr/Fgf15/Fgfr4-mediated feedback regulation of Cyp7a1.


Asunto(s)
Colesterol 7-alfa-Hidroxilasa/genética , Diabetes Mellitus Experimental/genética , Retroalimentación Fisiológica , Hipercolesterolemia/genética , Receptores Citoplasmáticos y Nucleares/genética , Animales , Ácidos y Sales Biliares/metabolismo , Colesterol/metabolismo , Colesterol 7-alfa-Hidroxilasa/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Retroalimentación Fisiológica/fisiología , Hipercolesterolemia/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA