RESUMEN
Epithelial squamous cell carcinomas (SCC) most commonly originate in the skin, where they display disruptions in the normally tightly regulated homeostatic balance between keratinocyte proliferation and terminal differentiation. We performed a transcriptome-wide screen for genes of unknown function that possess inverse expression patterns in differentiating keratinocytes compared with cutaneous SCC (cSCC), leading to the identification of MAB21L4 (C2ORF54) as an enforcer of terminal differentiation that suppresses carcinogenesis. Loss of MAB21L4 in human cSCC organoids increased expression of RET to enable malignant progression. In addition to transcriptional upregulation of RET, deletion of MAB21L4 preempted recruitment of the CacyBP-Siah1 E3 ligase complex to RET and reduced its ubiquitylation. In SCC organoids and in vivo tumor models, genetic disruption of RET or selective inhibition of RET with BLU-667 (pralsetinib) suppressed SCC growth while inducing concomitant differentiation. Overall, loss of MAB21L4 early during SCC development blocks differentiation by increasing RET expression. These results suggest that targeting RET activation is a potential therapeutic strategy for treating SCC. SIGNIFICANCE: Downregulation of RET mediated by MAB21L4-CacyBP interaction is required to induce epidermal differentiation and suppress carcinogenesis, suggesting RET inhibition as a potential therapeutic approach in squamous cell carcinoma.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Humanos , Proteínas de Unión al Calcio/metabolismo , Carcinogénesis/patología , Carcinoma de Células Escamosas/patología , Proliferación Celular , Queratinocitos/patología , Proteínas Proto-Oncogénicas c-ret/genética , Neoplasias Cutáneas/patologíaRESUMEN
Collateral arteries bridge opposing artery branches, forming a natural bypass that can deliver blood flow downstream of an occlusion. Inducing coronary collateral arteries could treat cardiac ischemia, but more knowledge on their developmental mechanisms and functional capabilities is required. Here we used whole-organ imaging and three-dimensional computational fluid dynamics modeling to define spatial architecture and predict blood flow through collaterals in neonate and adult mouse hearts. Neonate collaterals were more numerous, larger in diameter and more effective at restoring blood flow. Decreased blood flow restoration in adults arose because during postnatal growth coronary arteries expanded by adding branches rather than increasing diameters, altering pressure distributions. In humans, adult hearts with total coronary occlusions averaged 2 large collaterals, with predicted moderate function, while normal fetal hearts showed over 40 collaterals, likely too small to be functionally relevant. Thus, we quantify the functional impact of collateral arteries during heart regeneration and repair-a critical step toward realizing their therapeutic potential.
RESUMEN
Follicular CXCR5+ PD-1+ CD8 T cells (CD8 Tfc) arise in multiple models of systemic autoimmunity yet their functional contribution to disease remains in debate. Here we define the follicular localization and functional interactions of CD8 Tfc with B cells during autoimmune disease. The absence of functional T regulatory cells in autoimmunity allows for CD8 Tfc development that then expands with lymphoproliferation. CD8 Tfc are identifiable within the lymph nodes and spleen during systemic autoimmunity, but not during tissue-restricted autoimmune disease. Autoimmune CD8 Tfc cells are polyfunctional, producing helper cytokines IL-21, IL-4, and IFNγ while maintaining cytolytic proteins CD107a, granzyme B, and TNF. During autoimmune disease, IL-2-KO CD8 T cells infiltrate the B cell follicle and germinal center, including the dark zone, and in vitro induce activation-induced cytidine deaminase in naïve B cells via IL-4 secretion. CD8 Tfc represent a unique CD8 T cell population with a diverse effector cytokine repertoire that can contribute to pathogenic autoimmune B cell response.