Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 126(29): 5544-5554, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35833757

RESUMEN

The local environment within a hydrogel influences the properties of water, including the propensity for ice crystallization. Water-swollen amphiphilic copolymers produce tunable nanoscale environments, which are defined by hydrophobic associations, for the water molecules. Here, the antifreeze properties for equilibrium-swollen amphiphilic copolymers with a common hydrophilic component, hydroxyethyl acrylate (HEA), but associated through crystalline (octadecyl acrylate, ODA) or rubbery (ethylhexyl acrylate, EHA) hydrophobic segments, are examined. Differences in the efficacy of the associations can be clearly enunciated from compositional solubility limits for the copolymers in water (<2.6 mol % ODA vs ≤14 mol % EHA), and these differences can be attributed to the strength of the association. The equilibrium-swollen HEA-ODA copolymers are viscoelastic solids, while the swollen HEA-EHA copolymers are viscoelastic liquids. Cooling these swollen copolymers to nearly 200 K induces some crystallization of the water, where the fraction of water frozen depends on the details of the nanostructure. Decreasing the mean free path of water by increasing the ODA composition from 10 to 25 mol % leads to fractionally more unfrozen water (66-87%). The swollen HEA-EHA copolymers only marginally inhibit ice (<13%) except with 45 mol % EHA, where nearly 60% of the water remains amorphous on cooling to 200 K. In general, the addition of the EHA leads to less effective ice inhibition than analogous covalently crosslinked HEA hydrogels (19.9 ± 1.8%). These results illustrate that fluidity of confining surfaces can provide pathways for critical nuclei to form and crystal growth to proceed.


Asunto(s)
Hidrogeles , Agua , Acrilatos/química , Cristalización , Hielo , Polímeros/química , Agua/química
2.
J Chem Phys ; 154(15): 154903, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33887940

RESUMEN

Understanding the properties of water under either soft or hard confinement has been an area of great interest, but nanostructured amphiphilic polymers that provide a secondary confinement have garnered significantly less attention. Here, a series of statistical copolymers of 2-hydroxyethyl acrylate (HEA) and 2-(N-ethylperfluorooctane sulfonamido)ethyl methacrylate (FOSM) are swollen to equilibrium in water to form nanostructured physically cross-linked hydrogels to probe the effect of soft confinement on the dynamics of water. Changing the composition of the copolymer from 10 to 21 mol. % FOSM decreases the average size of the assembled FOSM cross-link, but also the spacing between the cross-links in the hydrogels with the mean distance between the FOSM aggregates decreasing from 3.9 to 2.7 nm. The dynamics of water within the hydrogels were assessed with quasielastic neutron scattering. These hydrogels exhibit superior performance for inhibition of water crystallization on supercooling in comparison to analogous hydrogels with different hydrophilic copolymer chemistries. Despite the lower water crystallinity, the self-diffusion coefficient for these hydrogels from the copolymers of HEA and FOSM decreases precipitously below 260 K, which is a counter to the nearly temperature invariant water dynamics reported previously with an analogous hydrogel [Wiener et al., J. Phys. Chem. B 120, 5543 (2016)] that exhibits nearly temperature invariant dynamics to 220 K. These results point to chemistry dependent dynamics of water that is confined within amphiphilic hydrogels, where the interactions of water with the hydrophilic segments can qualitatively alter the temperature dependent dynamics of water in the supercooled state.

3.
Langmuir ; 35(50): 16612-16623, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31747520

RESUMEN

Hydrophobically modified copolymers provide a versatile platform of hydrogel materials for diverse applications, but the influence of salts on the swelling and material properties of this class of hydrogels has not been extensively studied. Here, we investigate model hydrogels with three different sodium salts with anions chosen from the classic Hofmeister series to determine how these counterions influence the swelling and mechanical properties of neutral hydrogels. The gel chosen was based on a statistical copolymer of dimethylacrylamide and 2-(N-ethylperfluorooctane sulfonamido) ethyl acrylate (FOSA). Our measurements utilize a quartz crystal microbalance with dissipation (QCM-D) to quantify both swelling and rheological properties of these gels. We find that a 1 mol/L solution of Na2SO4, corresponding to a kosmotropic anion, leads to nearly a 2.6-fold gel deswelling and correspondingly, the complex modulus increases by an order of magnitude under these solution conditions. In contrast, an initial increase in swelling and then a swelling maximum is observed for a 0.02 mol/L concentration in the case of a chaotropic anion, NaClO4, but the changes in the degree of gel swelling in this system are not directly correlated with changes in the gel shear modulus. The addition of NaBr, an anion salt closer to the middle of the chaotropic to kosmotropic range, leads to hydrogel deswelling where the degree of deswelling and the shear modulus are both nearly independent of salt concentration. Overall, the observed trends are broadly consistent with more kosmotropic ions causing diminished solubility ("salting out") and strongly chaotropic ions causing improved solubility ("salting in"), a trend characteristic of the Hoffmeister series governing the solubility of many proteins and synthetic water-soluble polymers, but trends in the shear stiffness with gel swelling are clearly different from those normally observed in chemically cross-linked gels and are correspondingly difficult to interpret. The salt specificity of swelling and mechanical properties of nonionic hydrogels is important for any potential application in which a wide range of salt concentrations and types are encountered.

4.
Langmuir ; 35(43): 14049-14059, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31593472

RESUMEN

The cooperative assembly of functional precursors with block copolymers (BCPs) is a powerful, general route to fabricate ordered mesoporous materials, but the precise tuning of the mesopore size generally requires trial and error to obtain the correct BCP template or appropriate swelling agent. Here, we demonstrate the ability to effectively modulate both expansion and contraction of the ordered cylindrical mesopores relative to those obtained from cooperatively assembled Pluronic F127, resol, and tetraethylorthosilicate. The two key physical parameters for the swelling agents are their hydrophobicity, as quantified by the octanol-water partition coefficient (Kow), and Hansen solubility parameters that describe the interactions of the solvent with the different components of the BCP template. Four low volatility solvents are examined that span a wide Kow with up to 90 wt % solvent relative to the Pluronic F127. Glycerol triacetate (Kow < 1) can decrease the average mesopore size from 5.9 to 4.8 nm due to segmental screening of the interactions in the Pluronic F127 to decrease chain stretching at intermediate loadings. A modest increase in mesopore size to 8.1 nm can be achieved with trimethylbenzene (TMB, Kow = 3.42). Dioctyl phthalate (DOP), which is slightly more hydrophobic (Kow = 8.1), is more effective than TMB at expanding the pore size (maximum: 13.5 nm) without loss of ordered structure. A more hydrophobic solvent, tris (2-ethylhexyl) trimellitate (Kow = 12.5), is less effective at increasing the pore size (maximum: 8.2 nm). The Hansen solubility parameters for DOP most closely match those of the hydrophobic segment in the Pluronic F217 template. We attribute this similarity, which is related to the solvent quality, to the improved efficacy of DOP in increasing the pore size. These results illustrate that both the Hansen solubility parameters (relative to the hydrophobic segment of the template) and relative hydrophobicity of the swelling agent determine the obtainable pore sizes in cooperatively assembled ordered mesoporous materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...