RESUMEN
Through widespread immunization against SARS-CoV-2 prior to or post-infection, a substantial segment of the global population has acquired both humoral and cellular immunity, and there has been a notable reduction in the incidence of severe and fatal cases linked to this virus and accelerated recovery times for those infected. Nonetheless, a significant demographic, comprising around 20% to 30% of the adult population, remains unimmunized due to diverse factors. Furthermore, alongside those recovered from the infection, there is a subset of the population experiencing persistent symptoms referred to as Long COVID. This condition is more prevalent among individuals with underlying health conditions and immune system impairments. Some Long COVID pathologies stem from direct damage inflicted by the viral infection, whereas others arise from inadequate immune system control over the infection or suboptimal immunoregulation. There are differences in the serum cytokines and miRNA profiles between infected individuals who develop severe COVID-19 or Long COVID and those who control adequately the infection. This review delves into the advantages and constraints associated with employing imiquimod in human subjects to enhance the immune response during SARS-CoV-2 immunization. Restoration of the immune system can modify it towards a profile of non-susceptibility to SARS-CoV-2. An adequate immune system has the potential to curb viral propagation, mitigate symptoms, and ameliorate the severe consequences of the infection.
Asunto(s)
COVID-19 , Imiquimod , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/complicaciones , SARS-CoV-2/inmunología , Síndrome Post Agudo de COVID-19 , Adyuvantes Inmunológicos/uso terapéutico , Citocinas/metabolismo , Vacunas contra la COVID-19/inmunologíaRESUMEN
Pathogenic bacteria have several mechanisms to evade the host's immune response and achieve an efficient infection. Bacterial extracellular vesicles (EVs) are a relevant cellular communication mechanism, since they can interact with other bacterial cells and with host cells. In this review, we focus on the EVs produced by some World Health Organization (WHO) priority Gram-negative and Gram-positive pathogenic bacteria; by spore-producing bacteria; by Mycobacterium tuberculosis (a bacteria with a complex cell wall); and by Treponema pallidum (a bacteria without lipopolysaccharide). We describe the classification and the general properties of bacterial EVs, their role during bacterial infections and their effects on the host immune response. Bacterial EVs contain pathogen-associated molecular patterns that activate innate immune receptors, which leads to cytokine production and inflammation, but they also contain antigens that induce the activation of B and T cell responses. Understanding the many effects of bacterial EVs on the host's immune response can yield new insights on the pathogenesis of clinically important infections, but it can also lead to the development of EV-based diagnostic and therapeutic strategies. In addition, since EVs are efficient activators of both the innate and the adaptive immune responses, they constitute a promising platform for vaccine development.
Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Humanos , Animales , Inmunidad Innata , Interacciones Huésped-Patógeno/inmunología , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Bacterias/inmunologíaRESUMEN
It has been 34 months since the beginning of the SARS-CoV-2 coronavirus pandemic, which causes the COVID-19 disease. In several countries, immunization has reached a proportion near what is required to reach herd immunity. Nevertheless, infections and re-infections have been observed even in vaccinated persons. That is because protection conferred by vaccines is not entirely effective against new virus variants. It is unknown how often booster vaccines will be necessary to maintain a good level of protective immunity. Furthermore, many individuals refuse vaccination, and in developing countries, a large proportion of the population has not yet been vaccinated. Some live-attenuated vaccines against SARS-CoV-2 are being developed. Here, we analyze the indirect dispersion of a live-attenuated virus from vaccinated individuals to their contacts and the contribution that this phenomenon could have to reaching Herd Immunity.
RESUMEN
Tuberculosis remains one of the leading public health problems in the world. The mechanisms that lead to the activation of the immune response against Mycobacterium tuberculosis have been extensively studied, with a focus on the role of cytokines as the main signals for immune cell communication. However, less is known about the role of other signals, such as extracellular vesicles, in the communication between immune cells, particularly during the activation of the adaptive immune response. In this study, we determined that extracellular vesicles released by human neutrophils infected with M. tuberculosis contained several host proteins that are ectosome markers. In addition, we demonstrated that extracellular vesicles released by human neutrophils infected with M. tuberculosis released after only 30 min of infection carried mycobacterial antigens and pathogen-associated molecular patterns, and we identified 15 mycobacterial proteins that were consistently found in high concentrations in extracellular vesicles released by human neutrophils infected with M. tuberculosis; these proteins contain epitopes for CD4 T-cell activation. We found that extracellular vesicles released by human neutrophils infected with M. tuberculosis increased the expression of the costimulatory molecule CD80 and of the coinhibitory molecule PD-L1 on immature monocyte-derived dendritic cells. We also found that immature and mature dendritic cells treated with extracellular vesicles released by human neutrophils infected with M. tuberculosis were able to induce IFN-γ production by autologous M. tuberculosis antigen-specific CD4 T cells, indicating that these extracellular vesicles acted as antigen carriers and transferred mycobacterial proteins to the antigen-presenting cells. Our results provide evidence that extracellular vesicles released by human neutrophils infected with M. tuberculosis participate in the activation of the adaptive immune response against M. tuberculosis.
Asunto(s)
Vesículas Extracelulares , Mycobacterium tuberculosis , Tuberculosis , Humanos , Células TH1 , Neutrófilos , Monocitos , Células DendríticasRESUMEN
The clinical presentation of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ranges between mild respiratory symptoms and a severe disease that shares many of the features of sepsis. Sepsis is a deregulated response to infection that causes life-threatening organ failure. During sepsis, the intestinal epithelial cells are affected, causing an increase in intestinal permeability and allowing microbial translocation from the intestine to the circulation, which exacerbates the inflammatory response. Here we studied patients with moderate, severe and critical COVID-19 by measuring a panel of molecules representative of the innate and adaptive immune responses to SARS-CoV-2, which also reflect the presence of systemic inflammation and the state of the intestinal barrier. We found that non-surviving COVID-19 patients had higher levels of low-affinity anti-RBD IgA antibodies than surviving patients, which may be a response to increased microbial translocation. We identified sFas and granulysin, in addition to IL-6 and IL-10, as possible early biomarkers with high sensitivity (>73 %) and specificity (>51 %) to discriminate between surviving and non-surviving COVID-19 patients. Finally, we found that the microbial metabolite d-lactate and the tight junction regulator zonulin were increased in the serum of patients with severe COVID-19 and in COVID-19 patients with secondary infections, suggesting that increased intestinal permeability may be a source of secondary infections in these patients. COVID-19 patients with secondary infections had higher disease severity and mortality than patients without these infections, indicating that intestinal permeability markers could provide complementary information to the serum cytokines for the early identification of COVID-19 patients with a high risk of a fatal outcome.
Asunto(s)
COVID-19 , Coinfección , Sepsis , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Interleucina-6 , Interleucina-10 , Permeabilidad , Biomarcadores , IntestinosRESUMEN
Most individuals infected with Mycobacterium tuberculosis (Mtb) have latent tuberculosis (TB), which can be diagnosed with tests (such as the QuantiFERON-TB Gold test [QFT]) that detect the production of IFN-γ by memory T cells in response to the Mtb-specific antigens 6 kDa early secretory antigenic target EsxA (Rv3875) (ESAT-6), 10 kDa culture filtrate antigen EsxB (Rv3874) (CFP-10), and Mtb antigen of 7.7 kDa (Rv2654c) (TB7.7). However, the immunological mechanisms that determine if an individual will develop latent or active TB remain incompletely understood. Here we compared the response of innate and adaptive peripheral blood lymphocytes from healthy individuals without Mtb infection (QFT negative) and from individuals with latent (QFT positive) or active TB infection, to determine the characteristics of these cells that correlate with each condition. In active TB patients, the levels of IFN-γ that were produced in response to Mtb-specific antigens had high positive correlations with IL-1ß, TNF-α, MCP-1, IL-6, IL-12p70, and IL-23, while the proinflammatory cytokines had high positive correlations between themselves and with IL-12p70 and IL-23. These correlations were not observed in QFT-negative or QFT-positive healthy volunteers. Activation with Mtb-soluble extract (a mixture of Mtb antigens and pathogen-associated molecular patterns [PAMPs]) increased the percentage of IFN-γ-/IL-17-producing NK cells and of IL-17-producing innate lymphoid cell 3 (ILC3) in the peripheral blood of active TB patients, but not of QFT-negative or QFT-positive healthy volunteers. Thus, active TB patients have both adaptive and innate lymphocyte subsets that produce characteristic cytokine profiles in response to Mtb-specific antigens or PAMPs. These profiles are not observed in uninfected individuals or in individuals with latent TB, suggesting that they are a response to active TB infection.
Asunto(s)
Tuberculosis Latente , Mycobacterium tuberculosis , Tuberculosis , Antígenos Bacterianos , Citocinas , Humanos , Inmunidad Innata , Interleucina-17 , Interleucina-23 , Interleucina-6 , Linfocitos , Moléculas de Patrón Molecular Asociado a Patógenos , Factor de Necrosis Tumoral alfaRESUMEN
Valproic acid (VPA) is a drug commonly used for epileptic seizure control. Recently, it has been shown that VPA alters the activation of several immune cells, including Natural Killer (NK) cells, which play an important role in the containment of viruses and intracellular bacteria. Although VPA can increase susceptibility to extracellular pathogens, it is unknown whether the suppressor effect of VPA could affect the course of intracellular bacterial infection. This study aimed to evaluate the role of VPA during Listeria monocytogenes (L.m) infection, and whether NK cell activation was affected. We found that VPA significantly augmented mortality in L.m infected mice. This effect was associated with increased bacterial load in the spleen, liver, and blood. Concurrently, decreased levels of IFN-γ in serum and lower splenic indexes were observed. Moreover, in vitro analysis showed that VPA treatment decreased the frequency of IFN-γ-producing NK cells within L.m infected splenocytes. Similarly, VPA inhibited the production of IFN-γ by NK cells stimulated with IL-12 and IL-18, which is a crucial system for early IFN-γ production in listeriosis. Finally, VPA decreased the phosphorylation of STAT4, p65, and p38, without affecting the expression of IL-12 and IL-18 receptors. Altogether, our results indicate that VPA increases the susceptibility to Listeria monocytogenes infection and suggest that NK cell is one of the main targets of VPA, but further work is needed to ascertain this effect.
Asunto(s)
Interferón gamma/metabolismo , Células Asesinas Naturales/inmunología , Listeria monocytogenes/fisiología , Listeriosis/inmunología , Ácido Valproico/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Humanos , Inmunomodulación , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Factor de Transcripción STAT4/metabolismo , Transducción de Señal , Ácido Valproico/inmunologíaRESUMEN
PURPOSE: Chronic granulomatous disease (CGD) is a primary immunodeficiency characterized by an inability of phagocytes to produce reactive oxygen species, impairing their killing of various bacteria and fungi. We summarize here the 93 cases of CGD diagnosed in Mexico from 2011 to 2019. METHODS: Thirteen Mexican hospitals participated in this study. We describe the genetic, immunological, and clinical features of the 93 CGD patients from 78 unrelated kindreds. RESULTS: Eighty-two of the patients (88%) were male. All patients developed bacterial infections and 30% suffered from some kind of fungal infection. Fifty-four BCG-vaccinated patients (58%) presented infectious complications of BCG vaccine. Tuberculosis occurred in 29%. Granulomas were found in 56% of the patients. Autoimmune and inflammatory diseases were present in 15% of patients. A biological diagnosis of CGD was made in 89/93 patients, on the basis of NBT assay (n = 6), DHR (n = 27), and NBT plus DHR (n = 56). The deficiency was complete in all patients. The median age of biological diagnosis was 17 months (range, 0-186 months). A genetic diagnosis was made in 83/93 patients (when material was available), corresponding to CYBB (n = 64), NCF1 (n = 7), NCF2 (n = 7), and CYBA (n = 5) mutations. CONCLUSIONS: The clinical manifestations in these Mexican CGD patients were similar to those in patients elsewhere. This cohort is the largest in Latin America. Mycobacterial infections are an important cause of morbidity in Mexico, as in other countries in which tuberculosis is endemic and infants are vaccinated with BCG. X-linked CGD accounted for most of the cases in Mexico, as in other Latin American countries. However, a significant number of CYBA and NCF2 mutations were identified, expanding the spectrum of known causal mutations.
Asunto(s)
Enfermedad Granulomatosa Crónica/inmunología , Mutación/genética , Infecciones por Mycobacterium/epidemiología , Mycobacterium/fisiología , NADPH Oxidasa 2/genética , NADPH Oxidasas/genética , Adolescente , Autoinmunidad , Niño , Preescolar , Estudios de Cohortes , Femenino , Genes Ligados a X , Enfermedad Granulomatosa Crónica/epidemiología , Enfermedad Granulomatosa Crónica/genética , Humanos , Lactante , Recién Nacido , Inflamación , Masculino , México/epidemiologíaRESUMEN
Platelets are anucleate cells that have a role in several innate immune functions, including the secretion of proteins with antimicrobial activity. Several studies have demonstrated the ability of platelets to secrete thrombin-induced platelet microbicidal proteins and antimicrobial peptides, like hBD-1. However, the expression and secretion of defensins of the alpha family by platelets have not been fully elucidated. The aim of this study was to characterize the expression of defensin alpha 1 (DEFA1) in human platelets and megakaryocytes. Our data indicate that DEFA1 mRNA and protein are present in peripheral blood platelets and in the megakaryoblastic leukemia cell line (MEG-01). DEFA1 co-localize with α-granules of platelets and MEG-01 cells, and was also detected in cytoplasm of MEG-01 cells. The assay of our in vitro model of platelet-like particles (PLPs) revealed that MEG-01 cells could transfer DEFA1 mRNA to their differentiated PLPs. Furthermore, platelets secreted DEFA1 into the culture medium when activated with thrombin, adenosine diphosphate, and lipopolysaccharide; meanwhile, MEG-01 cells secreted DEFA1 when activated with thrombopoietin. Platelet's secreted DEFA1 can rebind to platelet's surface and have antibacterial activity against the gram-negative bacteria Escherichia coli. In summary, our data indicate that both, human platelets and megakaryocytes, can express and secrete DEFA1. These results suggest a new role of platelets and megakaryocytes in the innate immune response.
Asunto(s)
Plaquetas/metabolismo , Regulación de la Expresión Génica , Megacariocitos/metabolismo , alfa-Defensinas/genética , Antiinfecciosos/farmacología , Biomarcadores , Plaquetas/efectos de los fármacos , Línea Celular , Gránulos Citoplasmáticos/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Inmunofenotipificación , Megacariocitos/efectos de los fármacos , Péptidos/genética , Activación Plaquetaria/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes , Trombopoyetina/farmacologíaRESUMEN
BACKGROUND: Tuberculosis is the leading cause of death by an infectious microorganism worldwide. Conventional treatment lasts at least six months and has adverse effects; therefore, it is important to find therapeutic alternatives that reduce the bacterial load and may reduce the treatment duration. The immune response against tuberculosis can be modulated by several mechanisms, including extracellular vesicles (EVs), which are nano-sized membrane-bound structures that constitute an efficient communication mechanism among immune cells. METHODS: The EVs released by the J774A.1 mouse macrophage cell line, both spontaneously (S-EV) and after infection with Mycobacterium tuberculosis H37Rv (Mtb-EV), were purified by ultra-centrifugation and size-exclusion chromatography. The size distribution and chemical composition of these EVs were evaluated, and their effect on the bacterial load and the production of cytokines was determined in both in vitro and in vivo models of M. tuberculosis infection. RESULTS: Mtb-EV are larger than S-EV, they contain M. tuberculosis-specific antigens (not detected in EVs released from M. fortuitum-infected J774A.1 cells) and are rich in phosphatidylserine, present in their outer membrane layer. S-EV, but not Mtb-EV, reduced the bacterial load and the production of MCP-1 and TNF-α in M. tuberculosis-infected macrophages, and these effects were reversed when phosphatidylserine was blocked with annexin V. Both S-EV and Mtb-EV significantly reduced the lung bacterial load in mice infected with M. tuberculosis after 60 days of treatment, but they had no effect on survival or on the lung pneumonic area of these mice. CONCLUSION: J774A.1 macrophages infected with M. tuberculosis H37Rv released EVs that differed in size and phosphatidylserine content from spontaneously released EVs, and these EVs also had different biological effects: S-EV reduced the mycobacterial load and the cytokine production in vitro (through a phosphatidylserine-dependent mechanism), while both EVs reduced the lung bacterial load in vivo. These results are the basis for further experiments to evaluate whether EVs improve the efficiency of the conventional treatment for tuberculosis.
Asunto(s)
Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , Tuberculosis/terapia , Animales , Carga Bacteriana , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Vesículas Extracelulares/química , Vesículas Extracelulares/trasplante , Masculino , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/microbiologíaRESUMEN
Allergic conjunctivitis (AC) is one of the most common ophthalmological disorders seen in clinical practice. Growing evidence from recent years suggests that a subset of IL-10-expressing B cells is involved in inflammatory allergic diseases. In this study, we aimed to evaluate the potential involvement of blood Bregs cells in perennial allergic conjunctivitis (PAC), and interleukins (IL)-1ß, IL-6, IL-8, IL-10, and IL-12, and tumor necrosis factor (TNF)-α, were measured in tear samples and compared with healthy controls (HC) using flow cytometry. Non-significant differences in CD19âºIL-10⺠cell frequency between PAC patients and healthy controls (HC) were observed. Nevertheless, when we analyzed the mean fluorescence intensity (MFI) of IL-10 on CD19âºCD38Lo/Med/Hi-gated cells, we observed a significant decrease in MFI in all Bregs subsets in PAC patients. Additionally, tear cytokines showed 2.8 times lower levels of IL-10 than TNF-α in PAC patients when compared to HC. Our findings demonstrate an immunological dysregulation in patients with allergic conjunctivitis, characterized by the low expression of IL-10 in circulating CD19âºCD38⺠Bregs subsets and an inverted tear IL-10/TNF-α ratio, promoting a local pro-inflammatory microenvironment. These findings highlight the novel pathologic changes involved in ocular allergic diseases. Understanding systemic and local mechanisms will aid the design of immunomodulating therapeutics at different levels.
Asunto(s)
Linfocitos B Reguladores/metabolismo , Conjuntivitis Alérgica/inmunología , Conjuntivitis Alérgica/metabolismo , Interleucina-10/metabolismo , Lágrimas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Adolescente , Estudios de Casos y Controles , Niño , Femenino , Humanos , Subgrupos Linfocitarios/metabolismo , Masculino , Mitógenos/farmacologíaRESUMEN
Tuberculosis is one of the leading causes of mortality worldwide, it is caused by Mycobacterium tuberculosis (Mtb), a bacteria that employs several strategies to evade the host immune response. For instance, Mtb interferes with the overexpression of class II transactivator (CIITA) in macrophages exposed to IFN-γ by inhibiting histone acetylation at its promoter, which can be reverted by the histone deacetylase inhibitor (HDACi) sodium butyrate. In this work, we evaluated whether a different HDACi, valproic acid (VPA), could revert the inhibition of gene expression induced by Mtb. J774 macrophages treated with VPA and IFN-γ unexpectedly induced a higher expression of the inducible nitric oxide synthase and a higher production of nitric oxide when exposed to the 19â¯kDa lipoprotein of Mtb or the whole bacteria. However, VPA was unable to revert the inhibition of CIITA expression induced by the 19â¯kDa lipoprotein of Mtb. Finally, macrophages infected with Mtb and treated with VPA and IFN-γ showed a significant reduction in intracellular bacteria. Our findings suggest a new therapeutic potential of VPA for the treatment of tuberculosis.
Asunto(s)
Interferón gamma/inmunología , Macrófagos/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Óxido Nítrico/biosíntesis , Ácido Valproico/farmacología , Animales , Antituberculosos/farmacología , Células Cultivadas , Evaluación Preclínica de Medicamentos/métodos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Mycobacterium tuberculosis/aislamiento & purificación , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Óxido Nítrico Sintasa de Tipo II/genéticaRESUMEN
Sepsis, one of the leading causes of death in intensive care units, is caused by a dysregulated host response to infection that leads to life-threatening organ dysfunction. The proinflammatory and anti-inflammatory responses activated by the infecting microorganism become systemic, and the sustained anti-inflammatory response induces a state of immunosuppression that is characterized by decreased expression of HLA-DR on monocytes, T cell apoptosis, and reduced production of TNF-α by monocytes and macrophages in response to TLR ligands. Innate lymphoid cells (ILCs) are lymphocytes that lack Ag-specific receptors and lineage-specific markers; they express HLA-DR and are activated by cytokines and by direct recognition of microbial molecules. In this study, we evaluated if ILCs are affected by the anti-inflammatory response during sepsis. We found that the number of peripheral blood ILCs was decreased in septic patients compared with healthy volunteers; this decrease was caused by a reduction in ILC1 and ILC3 and is associated with apoptosis, because ILCs from septic patients expressed active caspase 3. ILCs from septic patients had decreased HLA-DR expression but increased expression of the activating receptors NKp46 and NKp44; they also showed a sustained expression of CD127 (IL-7R α-chain) and retained their capacity to produce TNF-α in response to TLR ligands. These results indicate that during sepsis, ILCs have decreased HLA-DR expression and die via apoptosis, similar to monocytes and T cells, respectively. However, other effector functions of ILCs (activation through NKp46 and NKp44, TNF-α production) may remain unaffected by the immunosuppressive environment prevailing in septic patients.
Asunto(s)
Subunidad alfa del Receptor de Interleucina-7/metabolismo , Linfocitos/inmunología , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Receptor 2 Gatillante de la Citotoxidad Natural/metabolismo , Sepsis/inmunología , Adulto , Apoptosis , Regulación hacia Abajo , Femenino , Antígenos HLA-DR/metabolismo , Humanos , Inmunidad Innata , Masculino , Persona de Mediana Edad , Receptores Toll-Like/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Adulto JovenRESUMEN
Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb). In the lungs, macrophages and neutrophils are the first immune cells that have contact with the infecting mycobacteria. Neutrophils are phagocytic cells that kill microorganisms through several mechanisms, which include the lytic enzymes and antimicrobial peptides that are found in their lysosomes, and the production of reactive oxygen species. Neutrophils also release extracellular vesicles (EVs) (100-1,000 nm in diameter) to the extracellular milieu; these EVs consist of a lipid bilayer surrounding a hydrophilic core and participate in intercellular communication. We previously demonstrated that human neutrophils infected in vitro with Mtb H37Rv release EVs (EV-TB), but the effect of these EVs on other cells relevant for the control of Mtb infection, such as macrophages, has not been completely analyzed. In this study, we characterized the EVs produced by non-stimulated human neutrophils (EV-NS), and the EVs produced by neutrophils stimulated with an activator (PMA), a peptide derived from bacterial proteins (fMLF) or Mtb, and observed that the four EVs differed in their size. Ligands for toll-like receptor (TLR) 2/6 were detected in EV-TB, and these EVs favored a modest increase in the expression of the co-stimulatory molecules CD80, a higher expression of CD86, and the production of higher amounts of TNF-α and IL-6, and of lower amounts of TGF-ß, in autologous human macrophages, compared with the other EVs. EV-TB reduced the amount of intracellular Mtb in macrophages, and increased superoxide anion production in these cells. TLR2/6 ligation and superoxide anion production are known inducers of autophagy; accordingly, we found that EV-TB induced higher expression of the autophagy-related marker LC3-II in macrophages, and the co-localization of LC3-II with Mtb inside infected macrophages. The intracellular mycobacterial load increased when autophagy was inhibited with wortmannin in these cells. In conclusion, our results demonstrate that neutrophils produce different EVs in response to diverse activators, and that EV-TB activate macrophages and promote the clearance of intracellular Mtb through early superoxide anion production and autophagy induction, which is a novel role for neutrophil-derived EVs in the immune response to Mtb.
Asunto(s)
Vesículas Extracelulares/metabolismo , Macrófagos/fisiología , Mycobacterium tuberculosis/fisiología , Neutrófilos/inmunología , Tuberculosis/inmunología , Autofagia , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Citocinas/metabolismo , Humanos , Espacio Intracelular , Activación de Macrófagos , Proteínas Asociadas a Microtúbulos/metabolismo , Neutrófilos/microbiología , Transporte de ProteínasRESUMEN
BACKGROUND: Currently, energy obtained from hypercaloric diets has been part of the obesity and type 2 diabetes mellitus (T2DM) epidemics from childhood to old age. Treatment alternatives have been sought from plants, minerals, and trace elements with metabolic effects. Vanadyl sulfate (VS) has been investigated as a hypoglycemic compound in animal and human studies showing effective insulin-mimetic properties. This characteristic encompasses several molecules that have beneficial pleiotropic effects. The aim was to determine the antiobesity, hypoglycemic, and hypolipidemic effects of VS on fructose-induced metabolic syndrome in aged rats. MATERIAL AND METHODS: Five groups of male Wistar rats were made, each with six rats: two groups with normal diet (ND) and three with high-fructose diet (HFD). The first ND group was treated with saline solution (SS), the second with VS; treatment for HFD groups was in the first group with SS, second with VS, and third with metformin. Weight, body mass index (BMI), blood glucose, and lipidic profile were measured; water, food, fructose and energy consumption were also determined. All parameters were compared among groups. RESULTS AND DISCUSSION: Although obese rats treated with VS presented anorexia, oligodipsia, and a marked weight loss in the first two weeks. They recovered food and water intake in the third week with a slow recovery of some weight weeks later. VS normalized blood glucose level and decreased triglyceride and insulin levels in obese rats. These results suggest that vanadyl sulfate shows antiobesity, hypoglycemic, and hypolipidemic properties in old obese rats and could be useful as an alternative, additional, and potent preventive treatment for obesity and T2DM control in elderly obese and poorly controlled diabetic patients. CONCLUSION: VS could play an important role in the treatment of metabolic syndrome, contributing to a decrease in obesity and T2DM, through different ways, such as euglycemia, satiety, weight loss, and lipid profile optimization, among others. However, more research is needed to confirm this suggestion.
RESUMEN
Cholesterol has been reported to play an important role during Mycobacterium tuberculosis infection and during its dormant state inside the host. We present the determination of proteomic profiles of M. tuberculosis H37Rv in the presence of cholesterol as the sole carbon source under exponential growth and in two in vitro dormancy phases (NRP1 and NRP2). Using 2D-PAGE, we detected that M. tuberculosis expressed a high diversity of proteins in both exponential and non-replicative phases. We also found that cholesterol was involved in the overexpression of some proteins related to sulfur metabolism (CysA2), electron transport (FixB), cell wall synthesis (Ald), iron storage (BfrB), protein synthesis (Tig and EF-Tu) and dormancy maintenance (HspX and TB 31.7). According to our results we propose that proteins Ald, BfrB, FadA5 and TB31.7 are likely to play a fundamental role during in vitro dormancy of M. tuberculosis in the presence of cholesterol, helping to counteract its intracellular hostile microenvironment.
Asunto(s)
Proteínas Bacterianas/metabolismo , Colesterol/metabolismo , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/metabolismo , Tuberculosis/microbiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Electroforesis en Gel Bidimensional , Regulación Bacteriana de la Expresión Génica , Humanos , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , ProteómicaRESUMEN
Mast cells play an essential role in different immunological phenomena including allergy and infectious diseases. Several bacteria induce mast cell activation leading to degranulation and the production of several cytokines and chemokines. However, mast cells also have different microbicidal activities such as phagocytosis and the release of DNA with embedded granular proteins known as Mast Cell Extracellular Traps (MCETs). Although previous reports indicate that extracellular bacteria are able to induce MCETs little is known if intracellular bacteria can induce these structures. In this work, we evaluated MCETs induction by the intracellular bacteria Listeria monocytogenes. We found that mast cells released DNA after stimulation with L. monocytogenes, and this DNA was complexed to histone and tryptase. Before extracellular DNA release, L. monocytogenes induced modifications to the mast cell nuclear envelope and DNA was detected outside the nucleus. L. monocytogenes stimulated mast cells to produce significant amounts of reactive oxygen species (ROS) and blocking NADPH oxidase diminished DNA release by mast cells. Finally, MCETs showed antimicrobial activity against L. monocytogenes that was partially blocked when ß-hexosaminidase activity was inhibited. These results show that L. monocytogenes induces mast cells to produce microbicidal MCETs, suggesting a role for mast cells in containing infection beyond the induction of inflammation.
Asunto(s)
Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Interacciones Huésped-Patógeno/inmunología , Listeria monocytogenes/inmunología , Mastocitos/inmunología , Mastocitos/metabolismo , Línea Celular , ADN/metabolismo , Histonas/metabolismo , Humanos , Listeriosis , Mastocitos/ultraestructura , Membrana Nuclear/ultraestructura , Fagocitosis/inmunología , Especies Reactivas de Oxígeno/metabolismo , beta-N-Acetilhexosaminidasas/metabolismoRESUMEN
Systemic lupus erythematosus is characterized by dysregulated activation of T and B cells and autoantibodies to nuclear antigens and, in some cases, lipid antigens. Liposomes with nonbilayer phospholipid arrangements induce a disease resembling human lupus in mice, including IgM and IgG antibodies against nonbilayer phospholipid arrangements. As the effect of these liposomes on the innate immune response is unknown and innate immune system activation is necessary for efficient antibody formation, we evaluated the effect of these liposomes on Toll-like receptor (TLR) signaling, cytokine production, proinflammatory gene expression, and T, NKT, dendritic, and B cells. Liposomes induce TLR-4- and, to a lesser extent, TLR-2/TLR-6-dependent signaling in TLR-expressing human embryonic kidney (HEK) cells and bone marrow-derived macrophages. Mice with the lupus-like disease had increased serum concentrations of proinflammatory cytokines, C3a and C5a; they also had more TLR-4-expressing splenocytes, a higher expression of genes associated with TRIF-dependent TLR-4-signaling and complement activation, and a lower expression of apoptosis-related genes, compared to healthy mice. The percentage of NKT and the percentage and activation of dendritic and B2 cells were also increased. Thus, TLR-4 and TLR-2/TLR-6 activation by nonbilayer phospholipid arrangements triggers an inflammatory response that could contribute to autoantibody production and the generation of a lupus-like disease in mice.
Asunto(s)
Liposomas/farmacología , Lupus Eritematoso Sistémico/inmunología , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 6/inmunología , Animales , Autoanticuerpos/biosíntesis , Autoanticuerpos/sangre , Clorpromazina/farmacología , Citocinas/biosíntesis , Citocinas/sangre , Diglicéridos/farmacología , Modelos Animales de Enfermedad , Femenino , Flagelina/farmacología , Regulación de la Expresión Génica , Células HEK293 , Humanos , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/sangre , Inmunoglobulina M/biosíntesis , Inmunoglobulina M/sangre , Inflamación , Lipopolisacáridos/farmacología , Liposomas/química , Lupus Eritematoso Sistémico/inducido químicamente , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/patología , Ratones , Ratones Endogámicos BALB C , Oligopéptidos/farmacología , Ácidos Fosfatidicos/química , Ácidos Fosfatidicos/farmacología , Fosfatidilcolinas/química , Fosfatidilcolinas/farmacología , Fosfatidilserinas/química , Fosfatidilserinas/farmacología , Receptor Toll-Like 2/agonistas , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/genética , Receptor Toll-Like 6/agonistas , Receptor Toll-Like 6/genéticaRESUMEN
Mast cells are crucial elements of the innate immune response. They reside in tissues that are commonly exposed to the external environment, such as the skin and mucosae, where they can rapidly detect the presence of pathogens and mount a potent inflammatory response that recruits other cellular effectors of the immune response. The contribution of mast cells to the immune response to viruses, bacteria, protozoa and multicellular parasites is well established, but there is scarce information about the role of these cells in fungal infections. In this study, we analyzed if mast cells are activated by Candida albicans and if the C-type lectin receptor Dectin-1 is involved in its recognition. We found that both yeasts and hyphae of C. albicans-induced mast cell degranulation and production of TNF-α, IL-6, IL-10, CCL3 and CCL4, while only yeasts were able to induce IL-1ß. Mast cells also produced ROS after stimulation with both dimorphic phases of C. albicans. When mast cells were activated with yeasts and hyphae, they showed decreased expression of IκBα and increased presence of phosphorylated Syk. Blockade of the receptor Dectin-1, but not Toll-like receptor 2, decreased TNF-α production by mast cell in response to C. albicans. These results indicate that mast cells are capable of sensing the two phases of C. albicans, and suggest that mast cells participate as an early inductor of inflammation during the early innate immune response to this fungus.
Asunto(s)
Candida albicans/inmunología , Degranulación de la Célula/inmunología , Inflamación/inmunología , Lectinas Tipo C/inmunología , Mastocitos/inmunología , Animales , Células Cultivadas , Quimiocina CCL3/biosíntesis , Quimiocina CCL4/biosíntesis , Hifa/inmunología , Quinasa I-kappa B/metabolismo , Interleucina-10/biosíntesis , Interleucina-1beta/biosíntesis , Interleucina-6/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Fosforilación/inmunología , Proteínas Tirosina Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Quinasa Syk , Factor de Necrosis Tumoral alfa/biosíntesis , Levaduras/inmunologíaRESUMEN
Lungs are indispensable organs for the respiratory process, and maintaining their homeostasis is essential for human health and survival. However, during the lifetime of an individual, the lungs suffer countless insults that put at risk their delicate organization and function. Many cells of the immune system participate to maintain this equilibrium and to keep functional lungs. Among these cells, mast cells have recently attracted attention because of their ability to rapidly secrete many chemical and biological mediators that modulate different processes like inflammation, angiogenesis, cell proliferation, etc. In this review, we focus on recent advances in the understanding of the role that mast cells play in lung protection during infections, and of the relation of mast cell responses to type I hypersensitivity-associated pathologies. Furthermore, we discuss the potential role of mast cells during wound healing in the lung and its association with lung cancer, and how mast cells could be exploited as therapeutic targets in some diseases.