Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37790450

RESUMEN

The field of induced proximity therapeutics is in its ascendancy but is limited by a lack of scalable tools to systematically explore effector-target protein pairs in an unbiased manner. Here, we combined Scalable POoled Targeting with a LIgandable Tag at Endogenous Sites (SPOTLITES) for the high-throughput tagging of endogenous proteins, with generic small molecule-based protein recruitment to screen for novel proximity-based effectors. We apply this methodology in two orthogonal screens for targeted protein degradation: the first using fluorescence to monitor target protein levels directly, and the second using a cellular growth phenotype that depends on the degradation of an essential protein. Our screens revealed a multitude of potential new effector proteins for degradation and converged on members of the CTLH complex which we demonstrate potently induce degradation. Altogether, we introduce a platform for pooled induction of endogenous protein-protein interactions that can be used to expand our toolset of effector proteins for targeted protein degradation and other forms of induced proximity.

2.
bioRxiv ; 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37503003

RESUMEN

System-level understanding of proteome organization and function requires methods for direct visualization and manipulation of proteins at scale. We developed an approach enabled by high-throughput gene tagging for the generation and analysis of complex cell pools with endogenously tagged proteins. Proteins are tagged with HaloTag to enable visualization or direct perturbation. Fluorescent labeling followed by in situ sequencing and deep learning-based image analysis identifies the localization pattern of each tag, providing a bird's-eye-view of cellular organization. Next, we use a hydrophobic HaloTag ligand to misfold tagged proteins, inducing spatially restricted proteotoxic stress that is read out by single cell RNA sequencing. By integrating optical and perturbation data, we map compartment-specific responses to protein misfolding, revealing inter-compartment organization and direct crosstalk, and assigning proteostasis functions to uncharacterized genes. Altogether, we present a powerful and efficient method for large-scale studies of proteome dynamics, function, and homeostasis.

3.
bioRxiv ; 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37503056

RESUMEN

The field of induced proximity therapeutics is in its ascendancy but is limited by a lack of scalable tools to systematically explore effector-target protein pairs in an unbiased manner. Here, we combined Scalable POoled Targeting with a LIgandable Tag at Endogenous Sites (SPOTLITES) for the high-throughput tagging of endogenous proteins, with generic small molecule-based protein recruitment to screen for novel proximity-based effectors. We apply this methodology in two orthogonal screens for targeted protein degradation: the first using fluorescence to monitor target protein levels directly, and the second using a cellular growth phenotype that depends on the degradation of an essential protein. Our screens revealed a multitude of potential new effector proteins for degradation and converged on members of the CTLH complex which we demonstrate potently induce degradation. Altogether, we introduce a platform for pooled induction of endogenous protein-protein interactions that can be used to expand our toolset of effector proteins for targeted protein degradation and other forms of induced proximity.

4.
J Cell Biol ; 219(2)2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31985747

RESUMEN

IRE1ß is an ER stress sensor uniquely expressed in epithelial cells lining mucosal surfaces. Here, we show that intestinal epithelial cells expressing IRE1ß have an attenuated unfolded protein response to ER stress. When modeled in HEK293 cells and with purified protein, IRE1ß diminishes expression and inhibits signaling by the closely related stress sensor IRE1α. IRE1ß can assemble with and inhibit IRE1α to suppress stress-induced XBP1 splicing, a key mediator of the unfolded protein response. In comparison to IRE1α, IRE1ß has relatively weak XBP1 splicing activity, largely explained by a nonconserved amino acid in the kinase domain active site that impairs its phosphorylation and restricts oligomerization. This enables IRE1ß to act as a dominant-negative suppressor of IRE1α and affect how barrier epithelial cells manage the response to stress at the host-environment interface.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endorribonucleasas/metabolismo , Endorribonucleasas/fisiología , Proteínas de la Membrana/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Células CACO-2 , Endorribonucleasas/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Proteínas Serina-Treonina Quinasas/genética , Proteostasis , Análisis de Secuencia de Proteína , Transducción de Señal , Estrés Fisiológico , Respuesta de Proteína Desplegada
5.
Genome Res ; 29(8): 1322-1328, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31239279

RESUMEN

Genome editing tools have simplified the generation of knock-in gene fusions, yet the prevalent use of gene-specific homology-directed repair (HDR) templates still hinders scalability. Consequently, realization of large-scale gene tagging requires further development of approaches to generate knock-in protein fusions via generic donors that do not require locus-specific homology sequences. Here, we combine intron-based protein trapping with homology-independent repair-based integration of a generic donor and demonstrate precise, scalable, and efficient gene tagging. Because editing is performed in introns using a synthetic exon, this approach tolerates mutations in the unedited allele, indels at the integration site, and the addition of resistance genes that do not disrupt the target gene coding sequence, resulting in easy and flexible gene tagging.


Asunto(s)
Edición Génica/métodos , Genoma Humano , Intrones , Mutagénesis Insercional , Proteínas Recombinantes de Fusión/genética , Secuencia de Bases , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Calnexina/genética , Calnexina/metabolismo , Línea Celular Tumoral , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Exones , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica , Células HEK293 , Células HeLa , Humanos , Plásmidos/química , Plásmidos/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Vimentina/genética , Vimentina/metabolismo
6.
Mol Biol Cell ; 30(17): 2296-2308, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31166830

RESUMEN

In eukaryotic cells, organelle-specific protein quality control (PQC) is critical for maintaining cellular homeostasis. Despite the Golgi apparatus being the major protein processing and sorting site within the secretory pathway, how it contributes to PQC has remained largely unknown. Using different chemical biology-based protein unfolding systems, we reveal the segregation of unfolded proteins from folded proteins in the Golgi. Quality control (QC) substrates are subsequently exported in distinct carriers, which likely contain unfolded proteins as well as highly oligomerized cargo that mimic protein aggregates. At an additional sorting step, oligomerized proteins are committed to lysosomal degradation, while unfolded proteins localize to the endoplasmic reticulum (ER) and associate with chaperones. These results highlight the existence of checkpoints at which QC substrates are selected for Golgi export and lysosomal degradation. Our data also suggest that the steady-state ER localization of misfolded proteins, observed for several disease-causing mutants, may have different origins.


Asunto(s)
Aparato de Golgi/metabolismo , Transporte de Proteínas/fisiología , Animales , Antígenos CD/metabolismo , Retículo Endoplásmico/metabolismo , Células Eucariotas/metabolismo , Aparato de Golgi/fisiología , Células HEK293 , Células HeLa , Homeostasis , Humanos , Ratones , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Desplegamiento Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vías Secretoras , Sialiltransferasas/metabolismo , alfa-Manosidasa/metabolismo
8.
Mol Biol Cell ; 29(11): 1284-1298, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29851555

RESUMEN

In eukaryotic cells, organelle-specific stress-response mechanisms are vital for maintaining cellular homeostasis. The Golgi apparatus, an essential organelle of the secretory system, is the major site of protein modification and sorting within a cell and functions as a platform for spatially regulated signaling. Golgi homeostasis mechanisms that regulate organelle structure and ensure precise processing and localization of protein substrates remain poorly understood. Using a chemical biology strategy to induce protein unfolding, we uncover a Golgi-specific transcriptional response. An RNA-sequencing profile of this stress response compared with the current state-of-the-art Golgi stressors, nigericin and xyloside, demonstrates the enhanced precision of Golgi targeting achieved with our system. The data set further reveals previously uncharacterized genes that we find to be essential for Golgi structural integrity. These findings highlight the Golgi's ability to sense misfolded proteins and establish new aspects of Golgi autoregulation.


Asunto(s)
Aparato de Golgi/metabolismo , Desplegamiento Proteico , Estrés Fisiológico/genética , Transcripción Genética , Ontología de Genes , Células HEK293 , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Biológicos , Estabilidad Proteica
9.
J Med Chem ; 61(2): 583-598, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28692295

RESUMEN

Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that recruit an E3 ligase to a target protein to facilitate ubiquitination and subsequent degradation of that protein. While the field of targeted degraders is still relatively young, the potential for this modality to become a differentiated and therapeutic reality is strong, such that both academic and pharmaceutical institutions are now entering this interesting area of research. In this article, we describe a broadly applicable process for identifying degrader hits based on the serine/threonine kinase TANK-binding kinase 1 (TBK1) and have generalized the key structural elements associated with degradation activities. Compound 3i is a potent hit (TBK1 DC50 = 12 nM, Dmax = 96%) with excellent selectivity against a related kinase IKKε, which was further used as a chemical tool to assess TBK1 as a target in mutant K-Ras cancer cells.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis/efectos de los fármacos , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Técnicas de Química Sintética , Polarización de Fluorescencia , Genes ras , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Estructura Molecular , Mutación , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Relación Estructura-Actividad , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/química , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
10.
Biophys J ; 108(6): 1361-1379, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25809250

RESUMEN

Cells control organelle size with great precision and accuracy to maintain optimal physiology, but the mechanisms by which they do so are largely unknown. Cilia and flagella are simple organelles in which a single measurement, length, can represent size. Maintenance of flagellar length requires an active transport process known as intraflagellar transport, and previous measurements suggest that a length-dependent feedback regulates intraflagellar transport. But the question remains: how is a length-dependent signal produced to regulate intraflagellar transport appropriately? Several conceptual models have been suggested, but testing these models quantitatively requires that they be cast in mathematical form. Here, we derive a set of mathematical models that represent the main broad classes of hypothetical size-control mechanisms currently under consideration. We use these models to predict the relation between length and intraflagellar transport, and then compare the predicted relations for each model with experimental data. We find that three models-an initial bolus formation model, an ion current model, and a diffusion-based model-show particularly good agreement with available experimental data. The initial bolus and ion current models give mathematically equivalent predictions for length control, but fluorescence recovery after photobleaching experiments rule out the initial bolus model, suggesting that either the ion current model or a diffusion-based model is more likely correct. The general biophysical principles of the ion current and diffusion-based models presented here to measure cilia and flagellar length can be generalized to measure any membrane-bound organelle volume, such as the nucleus and endoplasmic reticulum.


Asunto(s)
Chlamydomonas/fisiología , Cilios , Modelos Biológicos , Cilios/fisiología , Difusión , Flagelos/fisiología , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Iones/metabolismo , Microscopía Fluorescente , Movimiento , Tamaño de los Orgánulos , Especificidad de la Especie
11.
Nat Chem Biol ; 10(11): 957-62, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25242550

RESUMEN

Accumulation of unfolded proteins within the endoplasmic reticulum (ER) of eukaryotic cells leads to an unfolded protein response (UPR) that either restores homeostasis or commits the cells to apoptosis. Tools traditionally used to study the UPR are proapoptotic and thus confound analysis of long-term cellular responses to ER stress. Here, we describe an ER-localized HaloTag (ERHT) protein that can be conditionally destabilized using a small-molecule hydrophobic tag (HyT36). Treatment of ERHT-expressing cells with HyT36 induces acute, resolvable ER stress that results in transient UPR activation without induction of apoptosis. Transcriptome analysis of late-stage responses to this UPR stimulus reveals a link between UPR activity and estrogen signaling.


Asunto(s)
Adamantano/análogos & derivados , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrógenos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Estabilidad Proteica/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Adamantano/química , Adamantano/farmacología , Apoptosis , Células Cultivadas , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Transducción de Señal/efectos de los fármacos , Tapsigargina/farmacología , Tunicamicina/farmacología , Regulación hacia Arriba/efectos de los fármacos
12.
Curr Biol ; 20(16): 1458-63, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20655223

RESUMEN

Animals with an open coelom do not fully constrain internal tissues, and changes in tissue or organ position during body movements cannot be readily discerned from outside of the body. This complicates modeling of soft-bodied locomotion, because it obscures potentially important changes in the center of mass as a result of internal tissue movements. We used phase-contrast synchrotron X-ray imaging and transmission light microscopy to directly visualize internal soft-tissue movements in freely crawling caterpillars. Here we report a novel visceral-locomotory piston in crawling Manduca sexta larvae, in which the gut slides forward in advance of surrounding tissues. The initiation of gut sliding is synchronous with the start of the terminal prolegs' swing phase, suggesting that the animal's center of mass advances forward during the midabdominal prolegs' stance phase and is therefore decoupled from visible translations of the body. Based on synchrotron X-ray data and transmission light microscopy results, we present evidence for a two-body mechanical system with a nonlinear elastic gut that changes size and translates between the anterior and posterior of the animal. The proposed two-body system--the container and the contained--is unlike any form of legged locomotion previously reported and represents a new feature in our emerging understanding of crawling.


Asunto(s)
Locomoción/fisiología , Manduca/fisiología , Vísceras/fisiología , Animales , Fenómenos Biomecánicos , Larva/anatomía & histología , Larva/fisiología , Manduca/anatomía & histología , Manduca/crecimiento & desarrollo , Sincrotrones , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA