Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Brain Commun ; 5(6): fcad306, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025276

RESUMEN

In amyotrophic lateral sclerosis, a disease driven by abnormal transactive response DNA-binding protein of 43 kDa aggregation, CSF may contain pathological species of transactive response DNA-binding protein of 43 kDa contributing to the propagation of pathology and neuronal toxicity. These species, released in part by degenerating neurons, would act as a template for the aggregation of physiological protein contributing to the spread of pathology in the brain and spinal cord. In this study, a robust seed amplification assay was established to assess the presence of seeding-competent transactive response DNA-binding protein of 43 kDa species in CSF of apparently sporadic amyotrophic lateral sclerosis patients. These samples resulted in a significant acceleration of substrate aggregation differentiating the kinetics from healthy controls. In parallel, a second assay was developed to determine the level of target engagement that would be necessary to neutralize such species in human CSF by a therapeutic monoclonal antibody targeting transactive response DNA-binding protein of 43 kDa. For this, evaluation of the pharmacokinetic/pharmacodynamic effect for the monoclonal antibody, ACI-5891.9, in vivo and in vitro confirmed that a CSF concentration of ≍1100 ng/mL would be sufficient for sustained target saturation. Using this concentration in the seed amplification assay, ACI-5891.9 was able to neutralize the transactive response DNA-binding protein of 43 kDa pathogenic seeds derived from amyotrophic lateral sclerosis patient CSF. This translational work adds to the evidence of transmission of transactive response DNA-binding protein of 43 kDa pathology via CSF that could contribute to the non-contiguous pattern of clinical manifestations observed in amyotrophic lateral sclerosis and demonstrates the ability of a therapeutic monoclonal antibody to neutralize the toxic, extracellular seeding-competent transactive response DNA-binding protein of 43 kDa species in the CSF of apparently sporadic amyotrophic lateral sclerosis patients.

2.
MAbs ; 15(1): 2232087, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37408314

RESUMEN

Optimal pharmacokinetic (PK) properties of therapeutic monoclonal antibodies (mAbs) are essential to achieve the desired pharmacological benefits in patients. To accomplish this, we followed an approach comprising structure-based mAb charge engineering in conjunction with the use of relevant preclinical models to screen and select humanized candidates with PK suitable for clinical development. Murine mAb targeting TDP-43, ACI-5891, was humanized on a framework (VH1-3/VK2-30) selected based on the highest sequence homology. Since the initial humanized mAb (ACI-5891.1) presented a fast clearance in non-human primates (NHPs), reiteration of humanization on a less basic human framework (VH1-69-2/VK2-28) while retaining high sequence homology was performed. The resulting humanized variant, ACI-5891.9, presented a six-fold reduction in clearance in NHPs resulting in a significant increase in half-life. The observed reduced clearance of ACI-5891.9 was attributed not only to the overall reduction in isoelectric point (pI) by 2 units, but importantly to a more even surface potential. These data confirm the importance and contribution of surface charges to mAb disposition in vivo. Consistent low clearance of ACI-5891.9 in Tg32 mice, a human FcRn transgenic mouse model, further confirmed its utility for early assessment and prediction of human PK. These data demonstrate that mAb surface charge is an important parameter for consideration during the selection and screening of humanized candidates in addition to maintaining the other key physiochemical and target binding characteristics.


Asunto(s)
Anticuerpos Monoclonales , Receptores Fc , Ratones , Humanos , Animales , Ratones Transgénicos , Tasa de Depuración Metabólica , Punto Isoeléctrico , Antígenos de Histocompatibilidad Clase I
3.
Neurobiol Dis ; 179: 106050, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36809847

RESUMEN

Effective therapies are urgently needed to safely target TDP-43 pathology as it is closely associated with the onset and development of devastating diseases such as frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) and amyotrophic lateral sclerosis (ALS). In addition, TDP-43 pathology is present as a co-pathology in other neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Our approach is to develop a TDP-43-specific immunotherapy that exploits Fc gamma-mediated removal mechanisms to limit neuronal damage while maintaining physiological TDP-43 function. Thus, using both in vitro mechanistic studies in conjunction with the rNLS8 and CamKIIa inoculation mouse models of TDP-43 proteinopathy, we identified the key targeting domain in TDP-43 to accomplish these therapeutic objectives. Targeting the C-terminal domain of TDP-43 but not the RNA recognition motifs (RRM) reduces TDP-43 pathology and avoids neuronal loss in vivo. We demonstrate that this rescue is dependent on Fc receptor-mediated immune complex uptake by microglia. Furthermore, monoclonal antibody (mAb) treatment enhances phagocytic capacity of ALS patient-derived microglia, providing a mechanism to restore the compromised phagocytic function in ALS and FTD patients. Importantly, these beneficial effects are achieved while preserving physiological TDP-43 activity. Our findings demonstrate that a mAb targeting the C-terminal domain of TDP-43 limits pathology and neurotoxicity, enabling clearance of misfolded TDP-43 through microglia engagement, and supporting the clinical strategy to target TDP-43 by immunotherapy. SIGNIFICANCE STATEMENT: TDP-43 pathology is associated with various devastating neurodegenerative disorders with high unmet medical needs such as frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. Thus, safely and effectively targeting pathological TDP-43 represents a key paradigm for biotechnical research as currently there is little in clinical development. After years of research, we have determined that targeting the C-terminal domain of TDP-43 rescues multiple patho-mechanisms involved in disease progression in two animal models of FTD/ALS. In parallel, importantly, our studies establish that this approach does not alter the physiological functions of this ubiquitously expressed and indispensable protein. Together, our findings substantially contribute to the understanding of TDP-43 pathobiology and support the prioritization for clinical testing of immunotherapy approaches targeting TDP-43.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedad de Pick , Ratones , Animales , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Enfermedad de Alzheimer/genética , Neuroprotección , Proteínas de Unión al ADN/metabolismo , Inmunoterapia
4.
Redox Biol ; 60: 102609, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36708644

RESUMEN

Differentiation of fibroblasts to myofibroblasts is governed by the transforming growth factor beta (TGF-ß) through a mechanism involving redox signaling and generation of reactive oxygen species (ROS). Myofibroblasts synthesize proteins of the extracellular matrix (ECM) and display a contractile phenotype. Myofibroblasts are predominant contributors of wound healing and several pathological states, including fibrotic diseases and cancer. Inhibition of the ROS-generating enzyme NADPH oxidase 4 (NOX4) has been proposed to mitigate fibroblast to myofibroblast differentiation and to offer a therapeutic option for the treatment of fibrotic diseases. In this study, we addressed the role of NOX4 in physiological wound healing and in TGF-ß-induced myofibroblast differentiation. We explored the phenotypic changes induced by TGF-ß in primary skin fibroblasts isolated from Nox4-deficient mice by immunofluorescence, Western blotting and RNA sequencing. Mice deficient for Cyba, the gene coding for p22phox, a key subunit of NOX4 were used for confirmatory experiments as well as human primary skin fibroblasts. In vivo, the wound healing was similar in wild-type and Nox4-deficient mice. In vitro, despite a strong upregulation following TGF-ß treatment, Nox4 did not influence skin myofibroblast differentiation although a putative NOX4 inhibitor GKT137831 and a flavoprotein inhibitor diphenylene iodonium mitigated this mechanism. Transcriptomic analysis revealed upregulation of the mitochondrial protein Ucp2 and the stress-response protein Hddc3 in Nox4-deficient fibroblasts, which had however no impact on fibroblast bioenergetics. Altogether, we provide extensive evidence that NOX4 is dispensable for wound healing and skin fibroblast to myofibroblast differentiation, and suggest that another H2O2-generating flavoprotein drives this mechanism.


Asunto(s)
Peróxido de Hidrógeno , Miofibroblastos , Animales , Humanos , Ratones , Diferenciación Celular , Fibroblastos/metabolismo , Fibrosis , Peróxido de Hidrógeno/metabolismo , Miofibroblastos/metabolismo , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1 , Cicatrización de Heridas
5.
Front Cell Neurosci ; 17: 1289966, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38161998

RESUMEN

The tropomyosin receptor kinase B (TrkB) is encoded by the NTRK2 gene. It belongs to the family of transmembrane tyrosine kinases, which have key roles in the development and maintenance of the nervous system. Brain-derived neurotrophic factor (BDNF) and the neurotrophins NT3 and NT4/5 have high affinity for TrkB. Dysregulation of TrkB is associated to a large spectrum of diseases including neurodegeneration, psychiatric diseases and some cancers. The function of TrkB and its role in neural development have mainly been decrypted using transgenic mouse models, pharmacological modulators and human neuronal cell lines overexpressing NTRK2. In this study, we identified high expression and robust activity of TrkB in ReNcell VM, an immortalized human neural progenitor stem cell line and generated NTRK2-deficient (NTRK2-/-) ReNcell VM using the CRISPR/Cas9 gene editing technology. Global transcriptomic analysis revealed major changes in expression of specific genes responsible for neurogenesis, neuronal development and glial differentiation. In particular, key neurogenic transcription factors were massively down-regulated in NTRK2-/- cells, while early glial progenitor markers were enriched in NTRK2-/- cells compared to NTRK2+/+. This indicates a previously undescribed inhibitory role of TrkB on glial differentiation in addition to its well-described pro-neurogenesis role. Altogether, we have generated for the first time a human neural cell line with a loss-of-function mutation of NTRK2, which represents a reproducible and readily available cell culture system to study the role of TrkB during human neural differentiation, analyze the role of TrkB isoforms as well as validate TrkB antibodies and pharmacological agents targeting the TrkB pathway.

7.
Antioxidants (Basel) ; 10(11)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34829703

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a noninflammatory progressive lung disease. Oxidative damage is a hallmark of IPF, but the sources and consequences of oxidant generation in the lungs are unclear. In this study, we addressed the link between the H2O2-generating enzyme NADPH oxidase 4 (NOX4) and di-tyrosine (DT), an oxidative post-translational modification in IPF lungs. We performed immunohistochemical staining for DT and NOX4 in pulmonary tissue from patients with IPF and controls using validated antibodies. In the healthy lung, DT showed little or no staining and NOX4 was mostly present in normal vascular endothelium. On the other hand, both markers were detected in several cell types in the IPF patients, including vascular smooth muscle cells and epithelium (bronchial cells and epithelial cells type II). The link between NOX4 and DT was addressed in human fibroblasts deficient for NOX4 activity (mutation in the CYBA gene). Induction of NOX4 by Transforming growth factor beta 1 (TGFß1) in fibroblasts led to moderate DT staining after the addition of a heme-containing peroxidase in control cells but not in the fibroblasts deficient for NOX4 activity. Our data indicate that DT is a histological marker of IPF and that NOX4 can generate a sufficient amount of H2O2 for DT formation in vitro.

8.
Nat Neurosci ; 22(12): 2098-2110, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31740814

RESUMEN

Microglia are tissue-resident macrophages of the CNS that orchestrate local immune responses and contribute to several neurological and psychiatric diseases. Little is known about human microglia and how they orchestrate their highly plastic, context-specific adaptive responses during pathology. Here we combined two high-dimensional technologies, single-cell RNA-sequencing and time-of-flight mass cytometry, to identify microglia states in the human brain during homeostasis and disease. This approach enabled us to identify and characterize a previously unappreciated spectrum of transcriptional states in human microglia. These transcriptional states are determined by their spatial distribution, and they further change with aging and brain tumor pathology. This description of multiple microglia phenotypes in the human CNS may open promising new avenues for subset-specific therapeutic interventions.


Asunto(s)
Encéfalo/metabolismo , Glioblastoma/metabolismo , Microglía/metabolismo , Transcripción Genética , Adolescente , Adulto , Anciano , Envejecimiento/metabolismo , Femenino , Citometría de Flujo , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ARN , Adulto Joven
9.
Redox Biol ; 26: 101272, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31330481

RESUMEN

BACKGROUND: NADPH oxidases (NOX) are a family of flavoenzymes that catalyze the formation of superoxide anion radical (O2•-) and/or hydrogen peroxide (H2O2). As major oxidant generators, NOX are associated with oxidative damage in numerous diseases and represent promising drug targets for several pathologies. Various small molecule NOX inhibitors are used in the literature, but their pharmacological characterization is often incomplete in terms of potency, specificity and mode of action. EXPERIMENTAL APPROACH: We used cell lines expressing high levels of human NOX isoforms (NOX1-5, DUOX1 and 2) to detect NOX-derived O2•- or H2O2 using a variety of specific probes. NOX inhibitory activity of diphenylene iodonium (DPI), apocynin, diapocynin, ebselen, GKT136901 and VAS2870 was tested on NOX isoforms in cellular and membrane assays. Additional assays were used to identify potential off target effects, such as antioxidant activity, interference with assays or acute cytotoxicity. KEY RESULTS: Cells expressing active NOX isoforms formed O2•-, except for DUOX1 and 2, and in all cases activation of NOX isoforms was associated with the detection of extracellular H2O2. Among all molecules tested, DPI elicited dose-dependent inhibition of all isoforms in all assays, however all other molecules tested displayed interesting pharmacological characteristics, but did not meet criteria for bona fide NOX inhibitors. CONCLUSION: Our findings indicate that experimental results obtained with widely used NOX inhibitors must be carefully interpreted and highlight the challenge of developing reliable pharmacological inhibitors of these key molecular targets.


Asunto(s)
Inhibidores Enzimáticos/farmacología , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/metabolismo , Catálisis , Línea Celular , Cromatografía Liquida , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Humanos , Peróxido de Hidrógeno/metabolismo , Isoenzimas , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Modelos Biológicos , NADPH Oxidasas/genética , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Espectrometría de Masas en Tándem
10.
Free Radic Biol Med ; 112: 387-396, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28811143

RESUMEN

Neurodegenerative disease are frequently characterized by microglia activation and/or leukocyte infiltration in the parenchyma of the central nervous system and at the molecular level by increased oxidative modifications of proteins, lipids and nucleic acids. NADPH oxidases (NOX) emerged as a novel promising class of pharmacological targets for the treatment of neurodegeneration due to their role in oxidant generation and presumably in regulating microglia activation. The unique function of NOX is the generation of superoxide anion (O2•-) and hydrogen peroxide (H2O2). However in the context of neuroinflammation, they present paradoxical features since O2•-/H2O2 generated by NOX and/or secondary reactive oxygen species (ROS) derived from O2•-/H2O2 can either lead to neuronal oxidative damage or resolution of inflammation. The role of NOX enzymes has been investigated in many models of neurodegenerative diseases by using either genetic or pharmacological approaches. In the present review we provide a critical assessment of recent findings related to the role of NOX in the CNS as well as how the field has advanced over the last 5 years. In particular, we focus on the data derived from the work of a consortium (Neurinox) funded by the European Commission's Programme 7 (FP7). We discuss the evidence gathered from animal models and human samples linking NOX expression/activity with neuroinflammation in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Creutzfeldt-Jakob disease as well as autoimmune demyelinating diseases like multiple sclerosis (MS) and chronic inflammatory demyelinating polyneuropathy (CIDP). We address the possibility to use measurement of the activity of the NOX2 isoform in blood samples as biomarker of disease severity and treatment efficacy in neurodegenerative disease. Finally we clarify key controversial aspects in the field of NOX, such as NOX cellular expression in the brain, measurement of NOX activity, impact of genetic deletion of NOX in animal models of neurodegeneration and specificity of NOX inhibitors.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Síndrome de Creutzfeldt-Jakob/enzimología , Esclerosis Múltiple/enzimología , NADPH Oxidasa 2/genética , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/enzimología , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/patología , Animales , Antioxidantes/uso terapéutico , Biomarcadores/sangre , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/enzimología , Sistema Nervioso Central/patología , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/tratamiento farmacológico , Síndrome de Creutzfeldt-Jakob/patología , Modelos Animales de Enfermedad , Europa (Continente) , Expresión Génica , Humanos , Peróxido de Hidrógeno/metabolismo , Cooperación Internacional , Microglía/efectos de los fármacos , Microglía/enzimología , Microglía/patología , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , NADPH Oxidasa 2/antagonistas & inhibidores , NADPH Oxidasa 2/sangre , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/diagnóstico , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/tratamiento farmacológico , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/patología , Superóxidos/metabolismo
11.
Free Radic Biol Med ; 97: 95-108, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27212019

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by progressive loss of motor neurons, gliosis, neuroinflammation and oxidative stress. The aim of this study was to evaluate the involvement of NADPH oxidases (NOX) in the oxidative damage and progression of ALS neuropathology. We examined the pattern of NOX expression in spinal cords of patients and mouse models of ALS and analyzed the impact of genetic deletion of the NOX1 and 2 isoforms as well as pharmacological NOX inhibition in the SOD1(G93A) ALS mouse model. A substantial (10-60 times) increase of NOX2 expression was detected in three etiologically different ALS mouse models while up-regulation of some other NOX isoforms was model-specific. In human spinal cord samples, high NOX2 expression was detected in microglia. In contrast to previous publications, survival of SOD1(G93A) mice was not modified upon breeding with constitutive NOX1 and NOX2 deficient mice. As genetic deficiency of a single NOX isoform is not necessarily predictive of a pharmacological intervention, we treated SOD1(G93A) mice with broad-spectrum NOX inhibitors perphenazine and thioridazine. Both compounds reached in vivo CNS concentrations compatible with NOX inhibition and thioridazine significantly decreased superoxide levels in the spinal cord of SOD1(G93A) mice in vivo. Yet, neither perphenazine nor thioridazine prolonged survival. Thioridazine, but not perphenazine, dampened the increase of microglia markers in SOD1(G93A) mice. Thioridazine induced an immediate and temporary enhancement of motor performance (rotarod) but its precise mode of action needs further investigation. Additional studies using specific NOX inhibitors will provide further evidence on the relevance of NOX as drug targets for ALS and other neurodegenerative disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , NADPH Oxidasa 1/genética , NADPH Oxidasa 2/genética , NADPH Oxidasa 2/metabolismo , Adulto , Anciano , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Persona de Mediana Edad , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Perfenazina/administración & dosificación , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Superóxido Dismutasa-1/antagonistas & inhibidores , Superóxido Dismutasa-1/genética , Tioridazina/administración & dosificación
12.
Antioxid Redox Signal ; 23(14): 1171-85, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26583264

RESUMEN

SIGNIFICANCE: Enhanced levels of reactive oxygen species (ROS) have been associated with different disease states. Most attempts to validate and exploit these associations by chronic antioxidant therapies have provided disappointing results. Hence, the clinical relevance of ROS is still largely unclear. RECENT ADVANCES: We are now beginning to understand the reasons for these failures, which reside in the many important physiological roles of ROS in cell signaling. To exploit ROS therapeutically, it would be essential to define and treat the disease-relevant ROS at the right moment and leave physiological ROS formation intact. This breakthrough seems now within reach. CRITICAL ISSUES: Rather than antioxidants, a new generation of protein targets for classical pharmacological agents includes ROS-forming or toxifying enzymes or proteins that are oxidatively damaged and can be functionally repaired. FUTURE DIRECTIONS: Linking these target proteins in future to specific disease states and providing in each case proof of principle will be essential for translating the oxidative stress concept into the clinic.


Asunto(s)
Especies Reactivas de Oxígeno/metabolismo , Animales , Antioxidantes/farmacología , Humanos , Monoaminooxidasa/metabolismo , NADPH Oxidasas/fisiología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Estrés Oxidativo , Peroxidasa/metabolismo , Xantina Oxidasa/metabolismo
13.
Antioxid Redox Signal ; 23(14): 1113-29, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26415051

RESUMEN

SIGNIFICANCE: Oxidative stress is suggested to be a disease mechanism common to a wide range of disorders affecting human health. However, so far, the pharmacotherapeutic exploitation of this, for example, based on chemical scavenging of pro-oxidant molecules, has been unsuccessful. RECENT ADVANCES: An alternative emerging approach is to target the enzymatic sources of disease-relevant oxidative stress. Several such enzymes and isoforms have been identified and linked to different pathologies. For some targets, the respective pharmacology is quite advanced, that is, up to late-stage clinical development or even on the market; for others, drugs are already in clinical use, although not for indications based on oxidative stress, and repurposing seems to be a viable option. CRITICAL ISSUES: For all other targets, reliable preclinical validation and drug ability are key factors for any translation into the clinic. In this study, specific pharmacological agents with optimal pharmacokinetic profiles are still lacking. Moreover, these enzymes also serve largely unknown physiological functions and their inhibition may lead to unwanted side effects. FUTURE DIRECTIONS: The current promising data based on new targets, drugs, and drug repurposing are mainly a result of academic efforts. With the availability of optimized compounds and coordinated efforts from academia and industry scientists, unambiguous validation and translation into proof-of-principle studies seem achievable in the very near future, possibly leading towards a new era of redox medicine.


Asunto(s)
Antioxidantes/farmacología , Inhibidores Enzimáticos/farmacología , Animales , Antioxidantes/uso terapéutico , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/uso terapéutico , Humanos , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
14.
Antioxid Redox Signal ; 23(5): 358-74, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26135714

RESUMEN

AIMS: The NADPH oxidase (NOX) family of enzymes catalyzes the formation of reactive oxygen species (ROS). NOX enzymes not only have a key role in a variety of physiological processes but also contribute to oxidative stress in certain disease states. To date, while numerous small molecule inhibitors have been reported (in particular for NOX2), none have demonstrated inhibitory activity in vivo. As such, there is a need for the identification of improved NOX inhibitors to enable further evaluation of the biological functions of NOX enzymes in vivo as well as the therapeutic potential of NOX inhibition. In this study, both the in vitro and in vivo pharmacological profiles of GSK2795039, a novel NOX2 inhibitor, were characterized in comparison with other published NOX inhibitors. RESULTS: GSK2795039 inhibited both the formation of ROS and the utilization of the enzyme substrates, NADPH and oxygen, in a variety of semirecombinant cell-free and cell-based NOX2 assays. It inhibited NOX2 in an NADPH competitive manner and was selective over other NOX isoforms, xanthine oxidase, and endothelial nitric oxide synthase enzymes. Following systemic administration in mice, GSK2795039 abolished the production of ROS by activated NOX2 enzyme in a paw inflammation model. Furthermore, GSK2795039 showed activity in a murine model of acute pancreatitis, reducing the levels of serum amylase triggered by systemic injection of cerulein. INNOVATION AND CONCLUSIONS: GSK2795039 is a novel NOX2 inhibitor that is the first small molecule to demonstrate inhibition of the NOX2 enzyme in vivo.


Asunto(s)
Aminopiridinas/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Glicoproteínas de Membrana/metabolismo , NADPH Oxidasas/metabolismo , Sulfonamidas/farmacología , Aminopiridinas/química , Animales , Células Cultivadas , Inhibidores Enzimáticos/uso terapéutico , Masculino , Glicoproteínas de Membrana/antagonistas & inhibidores , Ratones Endogámicos C57BL , NADPH Oxidasa 2 , NADPH Oxidasas/antagonistas & inhibidores , Pancreatitis/tratamiento farmacológico , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Sulfonamidas/química
15.
Free Radic Biol Med ; 86: 239-49, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26013584

RESUMEN

NADPH oxidases (NOXs) constitute a family of enzymes generating reactive oxygen species (ROS) and are increasingly recognized as interesting drug targets. Here we investigated the effects of 10 phenothiazine compounds on NOX activity using an extensive panel of assays to measure production of ROS (Amplex red, WST-1, MCLA) and oxygen consumption. Striking differences between highly similar phenothiazines were observed. Two phenothiazines without N-substitution, including ML171, did not inhibit NOX enzymes, but showed assay interference. Introduction of an aliphatic amine chain on the N atom of the phenothiazine B ring (promazine) conferred inhibitory activity toward NOX2, NOX4, and NOX5 but not NOX1 and NOX3. Addition of an electron-attracting substituent in position 2 of the C ring extended the inhibitory activity to NOX1 and NOX3, with thioridazine being the most potent inhibitor. In contrast, the presence of a methylsulfoxide group at the same position (mesoridazine) entirely abolished NOX-inhibitory activity. A cell-free NOX2 assay suggested that inhibition by N-substituted phenothiazines was not due to competition with NADPH. A functional implication of NOX-inhibitory activity of thioridazine was demonstrated by its ability to block redox-dependent myofibroblast differentiation. Our results demonstrate that NOX-inhibitory activity is not a common feature of all antipsychotic phenothiazines and that substitution on the B-ring nitrogen is crucial for the activity, whereas that on the second position of the C ring modulates it. Our findings contribute to a better understanding of NOX pharmacology and might pave the path to discovery of more potent and selective NOX inhibitors.


Asunto(s)
Inhibidores Enzimáticos/farmacología , NADPH Oxidasas/antagonistas & inhibidores , Fenotiazinas/farmacología , Animales , Células CHO , Diferenciación Celular/efectos de los fármacos , Cricetinae , Cricetulus , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Células HEK293 , Humanos , Concentración 50 Inhibidora , Miofibroblastos/efectos de los fármacos , Miofibroblastos/fisiología , NADPH Oxidasas/química , NADPH Oxidasas/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Consumo de Oxígeno , Fenotiazinas/química , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
16.
Antioxid Redox Signal ; 23(5): 490-513, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-24483328

RESUMEN

SIGNIFICANCE: Voltage-gated proton channels are increasingly implicated in cellular proton homeostasis. Proton currents were originally identified in snail neurons less than 40 years ago, and subsequently shown to play an important auxiliary role in the functioning of reactive oxygen species (ROS)-generating nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Molecular identification of voltage-gated proton channels was achieved less than 10 years ago. Interestingly, so far, only one gene coding for voltage-gated proton channels has been identified, namely hydrogen voltage-gated channel 1 (HVCN1), which codes for the HV1 proton channel protein. Over the last years, the first picture of putative physiological functions of HV1 has been emerging. RECENT ADVANCES: The best-studied role remains charge and pH compensation during the respiratory burst of the phagocyte NADPH oxidase (NOX). Strong evidence for a role of HV1 is also emerging in sperm biology, but the relationship with the sperm NOX5 remains unclear. Probably in many instances, HV1 functions independently of NOX: for example in snail neurons, basophils, osteoclasts, and cancer cells. CRITICAL ISSUES: Generally, ion channels are good drug targets; however, this feature has so far not been exploited for HV1, and hitherto no inhibitors compatible with clinical use exist. However, there are emerging indications for HV1 inhibitors, ranging from diseases with a strong activation of the phagocyte NOX (e.g., stroke) to infertility, osteoporosis, and cancer. FUTURE DIRECTIONS: Clinically useful HV1-active drugs should be developed and might become interesting drugs of the future.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Canales Iónicos/metabolismo , NADPH Oxidasas/metabolismo , Espermatozoides/metabolismo , Animales , Humanos , Masculino
17.
PLoS Biol ; 11(11): e1001717, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24302884

RESUMEN

Histone deacetylase (HDAC) 4 is a transcriptional repressor that contains a glutamine-rich domain. We hypothesised that it may be involved in the molecular pathogenesis of Huntington's disease (HD), a protein-folding neurodegenerative disorder caused by an aggregation-prone polyglutamine expansion in the huntingtin protein. We found that HDAC4 associates with huntingtin in a polyglutamine-length-dependent manner and co-localises with cytoplasmic inclusions. We show that HDAC4 reduction delayed cytoplasmic aggregate formation, restored Bdnf transcript levels, and rescued neuronal and cortico-striatal synaptic function in HD mouse models. This was accompanied by an improvement in motor coordination, neurological phenotypes, and increased lifespan. Surprisingly, HDAC4 reduction had no effect on global transcriptional dysfunction and did not modulate nuclear huntingtin aggregation. Our results define a crucial role for the cytoplasmic aggregation process in the molecular pathology of HD. HDAC4 reduction presents a novel strategy for targeting huntingtin aggregation, which may be amenable to small-molecule therapeutics.


Asunto(s)
Histona Desacetilasas/genética , Enfermedad de Huntington/enzimología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corteza Cerebral/enzimología , Corteza Cerebral/patología , Epigénesis Genética , Femenino , Técnicas de Silenciamiento del Gen , Histona Desacetilasas/metabolismo , Proteína Huntingtina , Enfermedad de Huntington/fisiopatología , Enfermedad de Huntington/terapia , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Neuronas/fisiología , Fenotipo , Prueba de Desempeño de Rotación con Aceleración Constante , Transmisión Sináptica , Transcripción Genética
18.
PLoS One ; 8(11): e80849, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24278330

RESUMEN

Reversible protein acetylation provides a central mechanism for controlling gene expression and cellular signaling events. It is governed by the antagonistic commitment of two enzymes families: the histone acetyltransferases (HATs) and the histone deacetylases (HDACs). HDAC4, like its class IIa counterparts, is a potent transcriptional repressor through interactions with tissue specific transcription factors via its N-terminal domain. Whilst the lysine deacetylase activity of the class IIa HDACs is much less potent than that of the class I enzymes, HDAC4 has been reported to influence protein deacetylation through its interaction with HDAC3. To investigate the influence of HDAC4 on protein acetylation we employed the immunoaffinity-based AcetylScan proteomic method. We identified many proteins known to be modified by acetylation, but found that the absence of HDAC4 had no effect on the acetylation profile of the murine neonate brain. This is consistent with the biochemical data suggesting that HDAC4 may not function as a lysine deacetylase, but these in vivo data do not support the previous report showing that the enzymatic activity of HDAC3 might be modified by its interaction with HDAC4. To complement this work, we used Affymetrix arrays to investigate the effect of HDAC4 knock-out on the transcriptional profile of the postnatal murine brain. There was no effect on global transcription, consistent with the absence of a differential histone acetylation profile. Validation of the array data by Taq-man qPCR indicated that only protamine 1 and Igfbp6 mRNA levels were increased by more than one-fold and only Calml4 was decreased. The lack of a major effect on the transcriptional profile is consistent with the cytoplasmic location of HDAC4 in the P3 murine brain.


Asunto(s)
Encéfalo/enzimología , Histona Desacetilasas/metabolismo , Acetilación , Animales , Animales Recién Nacidos , Citoplasma/enzimología , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Transporte de Proteínas , Reproducibilidad de los Resultados , Transcripción Genética , Regulación hacia Arriba/genética
19.
Neurobiol Dis ; 45(1): 83-98, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21820514

RESUMEN

The availability of many high-quality genome-wide expression datasets has provided an exciting and unique opportunity to better understand the molecular etiology of Huntington's disease. Combining this knowledge with other aspects of huntingtin biology and disease modification screens is yielding important new insights into disease-mitigating therapeutic strategies. Having followed this line of inquiry for some time, we note that there have been a number of surprises regarding the subsequently confirmed relationships between gene expression and disease etiology. Moreover, the complexity and sheer number of proposed mechanisms by which huntingtin can perturb gene expression continues to expand. Nonetheless, ongoing efforts to enthusiastically and critically evaluate the relationships between HD pathobiology and gene expression promise to deliver accurate predictions as to which therapeutic strategies will be most effective. An exciting new arm of this research also demonstrates the power of pharmacogenomics to detect (and rule out) important neuroprotective gene expression effects.


Asunto(s)
Encéfalo/metabolismo , Perfilación de la Expresión Génica , Enfermedad de Huntington/genética , Animales , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Enfermedad de Huntington/metabolismo
20.
Nat Med ; 18(1): 153-8, 2011 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-22179319

RESUMEN

Huntington's disease is a fatal neurodegenerative disorder caused by an expanded polyglutamine repeat in huntingtin (HTT) protein. We previously showed that calorie restriction ameliorated Huntington's disease pathogenesis and slowed disease progression in mice that model Huntington's disease (Huntington's disease mice). We now report that overexpression of sirtuin 1 (Sirt1), a mediator of the beneficial metabolic effects of calorie restriction, protects neurons against mutant HTT toxicity, whereas reduction of Sirt1 exacerbates mutant HTT toxicity. Overexpression of Sirt1 improves motor function, reduces brain atrophy and attenuates mutant-HTT-mediated metabolic abnormalities in Huntington's disease mice. Further mechanistic studies suggested that Sirt1 prevents the mutant-HTT-induced decline in brain-derived neurotrophic factor (BDNF) concentrations and the signaling of its receptor, TrkB, and restores dopamine- and cAMP-regulated phosphoprotein, 32 kDa (DARPP32) concentrations in the striatum. Sirt1 deacetylase activity is required for Sirt1-mediated neuroprotection in Huntington's disease cell models. Notably, we show that mutant HTT interacts with Sirt1 and inhibits Sirt1 deacetylase activity, which results in hyperacetylation of Sirt1 substrates such as forkhead box O3A (Foxo3a), thereby inhibiting its pro-survival function. Overexpression of Sirt1 counteracts the mutant-HTT-induced deacetylase deficit, enhances the deacetylation of Foxo3a and facilitates cell survival. These findings show a neuroprotective role for Sirt1 in mammalian Huntington's disease models and open new avenues for the development of neuroprotective strategies in Huntington's disease.


Asunto(s)
Encéfalo/metabolismo , Enfermedad de Huntington/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Sirtuina 1/metabolismo , Animales , Encéfalo/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Humanos , Proteína Huntingtina , Enfermedad de Huntington/patología , Ratones , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Proteínas Nucleares/genética , Ratas , Receptor trkB/metabolismo , Transducción de Señal , Sirtuina 1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...