Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3021, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589401

RESUMEN

Preterm birth is currently the leading cause of neonatal morbidity and mortality. Genetic, immunological and infectious causes are suspected. Preterm infants have a higher risk of severe bacterial neonatal infections, most of which are caused by Escherichia coli an in particular E. coli K1strains. Women with history of preterm delivery have a high risk of recurrence and therefore constitute a target population for the development of vaccine against E. coli neonatal infections. Here, we characterize the immunological, microbiological and protective properties of a live attenuated vaccine candidate in adult female mice and their pups against after a challenge by K1 and non-K1 strains of E. coli. Our results show that the E. coli K1 E11 ∆aroA vaccine induces strong immunity, driven by polyclonal bactericidal antibodies. In our model of meningitis, mothers immunized prior to mating transfer maternal antibodies to pups, which protect newborn mice against various K1 and non-K1 strains of E. coli. Given the very high mortality rate and the neurological sequalae associated with neonatal E. coli K1 meningitis, our results constitute preclinical proof of concept for the development of a live attenuated vaccine against severe E. coli infections in women at risk of preterm delivery.


Asunto(s)
Infecciones por Escherichia coli , Enfermedades del Recién Nacido , Meningitis , Nacimiento Prematuro , Lactante , Adulto , Recién Nacido , Femenino , Animales , Ratones , Humanos , Escherichia coli/genética , Vacunas Atenuadas , Nacimiento Prematuro/prevención & control , Recien Nacido Prematuro , Infecciones por Escherichia coli/prevención & control , Enfermedades del Recién Nacido/etiología , Anticuerpos , Meningitis/etiología
2.
EMBO Mol Med ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684864

RESUMEN

As an important immune stimulator and modulator, IFNγ is crucial for gut homeostasis and its dysregulation links to diverse colon pathologies, such as colitis and colorectal cancer (CRC). Here, we demonstrated that the epigenetic regulator, CBX3 (also known as HP1γ) antagonizes IFNγ signaling in the colon epithelium by transcriptionally repressing two critical IFNγ-responsive genes: STAT1 and CD274 (encoding Programmed death-ligand 1, PD-L1). Accordingly, CBX3 deletion resulted in chronic mouse colon inflammation, accompanied by upregulated STAT1 and CD274 expressions. Chromatin immunoprecipitation indicated that CBX3 tethers to STAT1 and CD274 promoters to inhibit their expression. Reversely, IFNγ significantly reduces CBX3 binding to these promoters and primes gene expression. This antagonist effect between CBX3 and IFNγ on STAT1/PD-L1 expression was also observed in CRC. Strikingly, CBX3 deletion heightened CRC cells sensitivity to IFNγ, which ultimately enhanced their chemosensitivity under IFNγ stimulation in vitro with CRC cells and in vivo with a syngeneic mouse tumor model. Overall, this work reveals that by negatively tuning IFNγ-stimulated immune genes' transcription, CBX3 participates in modulating colon inflammatory response and CRC chemo-resistance.

3.
Ann Rheum Dis ; 83(3): 312-323, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38049981

RESUMEN

OBJECTIVES: Alterations in tryptophan (Trp) metabolism have been reported in inflammatory diseases, including rheumatoid arthritis (RA). However, understanding whether these alterations participate in RA development and can be considered putative therapeutic targets remains undetermined.In this study, we combined quantitative Trp metabolomics in the serum from patients with RA and corrective administration of a recombinant enzyme in experimental arthritis to address this question. METHODS: Targeted quantitative Trp metabolomics was performed on the serum from 574 previously untreated patients with RA from the ESPOIR (Etude et Suivi des POlyarthrites Indifférenciées Récentes) cohort and 98 healthy subjects. A validation cohort involved 69 established patients with RA. Dosages were also done on the serum of collagen-induced arthritis (CIA) and collagen antibody-induced arthritis (CAIA) mice and controls. A proof-of-concept study evaluating the therapeutic potency of targeting the kynurenine pathway was performed in the CAIA model. RESULTS: Differential analysis revealed dramatic changes in Trp metabolite levels in patients with RA compared with healthy controls. Decreased levels of kynurenic (KYNA) and xanthurenic (XANA) acids and indole derivatives, as well as an increased level of quinolinic acid (QUIN), were found in the serum of patients with RA. They correlated positively with disease severity (assessed by both circulating biomarkers and disease activity scores) and negatively with quality-of-life scores. Similar profiles of kynurenine pathway metabolites were observed in the CAIA and CIA models. From a mechanistic perspective, we demonstrated that QUIN favours human fibroblast-like synoviocyte proliferation and affected their cellular metabolism, through inducing both mitochondrial respiration and glycolysis. Finally, systemic administration of the recombinant enzyme aminoadipate aminotransferase, responsible for the generation of XANA and KYNA, was protective in the CAIA model. CONCLUSIONS: Altogether, our preclinical and clinical data indicate that alterations in the Trp metabolism play an active role in the pathogenesis of RA and could be considered as a new therapeutic avenue.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Humanos , Animales , Ratones , Triptófano/uso terapéutico , Quinurenina/uso terapéutico , Biomarcadores , Artritis Experimental/patología
4.
Cell Immunol ; 395-396: 104796, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38104514

RESUMEN

Newborns, whether born prematurely or at term, have a fully formed but naive immune system that must adapt to the extra-uterine environment to prevent infections. Maternal immunity, transmitted through the placenta and breast milk, protects newborns against infections, primarily via immunoglobulins (IgG and IgA) and certain maternal immune cells also known as microchimeric cells. Recently, it also appeared that the maternal gut microbiota played a vital role in neonatal immune maturation via microbial compounds impacting immune development and the establishment of immune tolerance. In this context, maternal vaccination is a powerful tool to enhance even more maternal and neonatal health. It involves the transfer of vaccine-induced antibodies to protect both mother and child from infectious diseases. In this work we review the state of the art on maternal immune factors involved in the prevention of neonatal bacterial infections, with particular emphasis on the role of maternal vaccination in protecting neonates against bacterial disease.


Asunto(s)
Infecciones Bacterianas , Enfermedades Transmisibles , Embarazo , Femenino , Niño , Recién Nacido , Humanos , Leche Humana , Factores Inmunológicos , Infecciones Bacterianas/prevención & control , Anticuerpos Antivirales
5.
EBioMedicine ; 88: 104439, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36709579

RESUMEN

BACKGROUND: Worldwide, Escherichia coli is the leading cause of neonatal Gram-negative bacterial meningitis, but full understanding of the pathogenesis of this disease is not yet achieved. Moreover, to date, no vaccine is available against bacterial neonatal meningitis. METHODS: Here, we used Transposon Sequencing of saturated banks of mutants (TnSeq) to evaluate E. coli K1 genetic fitness in murine neonatal meningitis. We identified E. coli K1 genes encoding for factors important for systemic dissemination and brain infection, and focused on products with a likely outer-membrane or extra-cellular localization, as these are potential vaccine candidates. We used in vitro and in vivo models to study the efficacy of active and passive immunization. RESULTS: We selected for further study the conserved surface polysaccharide Poly-ß-(1-6)-N-Acetyl Glucosamine (PNAG), as a strong candidate for vaccine development. We found that PNAG was a virulence factor in our animal model. We showed that both passive and active immunization successfully prevented and/or treated meningitis caused by E. coli K1 in neonatal mice. We found an excellent opsonophagocytic killing activity of the antibodies to PNAG and in vitro these antibodies were also able to decrease binding, invasion and crossing of E. coli K1 through two blood brain barrier cell lines. Finally, to reinforce the potential of PNAG as a vaccine candidate in bacterial neonatal meningitis, we demonstrated that Group B Streptococcus, the main cause of neonatal meningitis in developed countries, also produced PNAG and that antibodies to PNAG could protect in vitro and in vivo against this major neonatal pathogen. INTERPRETATION: Altogether, these results indicate the utility of a high-throughput DNA sequencing method to identify potential immunotherapy targets for a pathogen, including in this study a potential broad-spectrum target for prevention of neonatal bacterial infections. FUNDINGS: ANR Seq-N-Vaq, Charles Hood Foundation, Hearst Foundation, and Groupe Pasteur Mutualité.


Asunto(s)
Escherichia coli , Meningitis Bacterianas , Animales , Ratones , Escherichia coli/genética , Anticuerpos Antibacterianos , Bacterias/genética , Inmunoterapia , Secuenciación de Nucleótidos de Alto Rendimiento
6.
Stem Cell Rev Rep ; 19(3): 585-600, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36422774

RESUMEN

Since the beginning of the Coronavirus disease (COVID)-19 pandemic in December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for more than 600 million infections and 6.5 million deaths worldwide. Given the persistence of SARS-CoV-2 and its ability to develop new variants, the implementation of an effective and long-term herd immunity appears to be crucial to overcome the pandemic. While a vast field of research has focused on the role of humoral immunity against SARS-CoV-2, a growing body of evidence suggest that antibodies alone only confer a partial protection against infection of reinfection which could be of high importance regarding the strategic development goals (SDG) of the United Nations (UN) and in particular UN SDG3 that aims towards the realization of good health and well being on a global scale in the context of the COVID-19 pandemic.In this review, we highlight the role of humoral immunity in the host defense against SARS-CoV-2, with a focus on highly neutralizing antibodies. We summarize the results of the main clinical trials leading to an overall disappointing efficacy of convalescent plasma therapy, variable results of monoclonal neutralizing antibodies in patients with COVID-19 but outstanding results for the mRNA based vaccines against SARS-CoV-2. Finally, we advocate that beyond antibody responses, the development of a robust cellular immunity against SARS-CoV-2 after infection or vaccination is of utmost importance for promoting immune memory and limiting disease severity, especially in case of (re)-infection by variant viruses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vacunas contra la COVID-19 , Pandemias/prevención & control , Sueroterapia para COVID-19 , Anticuerpos Neutralizantes/uso terapéutico
7.
iScience ; 25(11): 105463, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36338433

RESUMEN

Vimentin is a type III intermediate filament protein, widely expressed in mesenchymal cells. Mainly located in the cytoplasm, vimentin can also appear at extracellular locations, where it may interact with bacterial or viral pathogens. In this study, we aimed at investigating the implication of vimentin in SARS-CoV-2 viral entry and the consequences on viral replication and cellular response. We showed that upon infection, vimentin was upregulated at the cell surface, where it interacts with ACE2 for SARS-CoV-2 entry. We demonstrated a direct interaction between SARS-CoV-2 spike protein, ACE2, and vimentin in epithelial cells. Inhibition of cell-surface vimentin availability resulted in reduced viral entry and cytopathogenic effects. Finally, we showed that the expression of inflammatory cytokines and chemokines was modulated by vimentin-SARS-CoV-2 interaction. In conclusion, our data suggest that cell-surface vimentin acts as a co-receptor for SARS-CoV-2.

8.
Front Allergy ; 3: 898731, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36238933

RESUMEN

Background: Allergic bronchopulmonary aspergillosis (ABPA) is an underestimated allergic disease due to Aspergillus fumigatus (AF). The main diagnostic criteria for ABPA rely on the evaluation of immunoglobulin (Ig) E and IgG responses to AF extracts, although these cannot discriminate AF-sensitization from ABPA. Objectives: To evaluate the performance of cellular functional assays with extract and molecular AF allergens in ABPA. Methods: A prospective cohort of 67 patients (6 ABPA) was investigated with basophil activation test (BAT) with AF extract. Twelve patients were further investigated for BAT responses to molecular AF components: Asp f 1, Asp f 2, Asp f 3, Asp f 4, and Asp f 6. Results: BAT with AF extract with an optimized cutoff displayed 100% sensitivity and 77.6% specificity for ABPA diagnosis. Among patients with positive BAT to AF, BAT with Asp f 4 was significantly higher in ABPA patients at 10 ng/mL (mean basophil stimulation index 10.56 in ABPA vs. 1.24 in non-ABPA patients, p = 0.0002). Conclusion: BAT with AF is a promising diagnostic biomarker in the context of suspected ABPA, which can be further improved with AF molecular allergens, especially Asp f 4.

9.
Allergy ; 77(11): 3199-3216, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35976185

RESUMEN

Humans inhale, ingest, and touch thousands of fungi each day. The ubiquity and diversity of the fungal kingdom, reflected by its complex taxonomy, are in sharp contrast with our scarce knowledge about its distribution, pathogenic effects, and effective interventions at the environmental and individual levels. Here, we present an overview of salient features of fungi as permanent players of the human exposome and key determinants of human health, through the lens of fungal allergy and other fungal hypersensitivity reactions. Improved understanding of the fungal exposome sheds new light on the epidemiology of fungal-related hypersensitivity diseases, their immunological substratum, the currently available methods, and biomarkers for environmental and medical fungi. Unmet needs are described and potential approaches are highlighted as perspectives.


Asunto(s)
Exposoma , Hipersensibilidad , Humanos , Biomarcadores
10.
J Clin Med ; 11(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35628877

RESUMEN

Background: Preterm birth is a major cause of morbidity and mortality in infants and children. Non-invasive methods for screening the neonatal immune status are lacking. Archaea, a prokaryotic life domain, comprise methanogenic species that are part of the neonatal human microbiota and contribute to early immune imprinting. However, they have not yet been characterized in preterm neonates. Objective: To characterize the gut immunological and methanogenic Archaeal (MA) signature in preterm neonates, using the presence or absence of atopic conditions at the age of one year as a clinical endpoint. Methods: Meconium and stool were collected from preterm neonates and used to develop a standardized stool preparation method for the assessment of mediators and cytokines and characterize the qPCR kinetics of gut MA. Analysis addressed the relationship between immunological biomarkers, Archaea abundance, and atopic disease at age one. Results: Immunoglobulin E, tryptase, calprotectin, EDN, cytokines, and MA were detectable in the meconium and later samples. Atopic conditions at age of one year were positively associated with neonatal EDN, IL-1ß, IL-10, IL-6, and MA abundance. The latter was negatively associated with neonatal EDN, IL-1ß, and IL-6. Conclusions: We report a non-invasive method for establishing a gut immunological and Archaeal signature in preterm neonates, predictive of atopic diseases at the age of one year.

11.
J Periodontol ; 93(4): 613-620, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34396525

RESUMEN

BACKGROUND: Despite combined antiretroviral therapy (cART), total cure of immunodeficiency virus type 1 (HIV-1) infection remains elusive. Chronic periodontitis (CP) is strongly associated with HIV-1 infection. This condition is characterized by an intense inflammatory infiltrate mainly constituted of immune cells which in turn may be a valuable source of HIV-1 reactivation. This study aimed to determine if gingival tissue could act as a reservoir for HIV-1. METHODS: Twelve patients with HIV-1 and CP and 12 controls (no HIV-1-infection and no CP) were evaluated in a cross-sectional study. RNA viral load and interleukin (IL) levels were determined in blood plasma and saliva. Histological sections of gingival tissue were stained with fluorescent antibodies against p24 antigen and different cellular biomarkers. RESULTS: In six of the 12 patients, HIV RNA load was detected, despite cART; in three of them, expression of viral RNA was also detected in saliva. The levels of IL-2, IL-6, and IL-12 were higher in blood and saliva of patients with HIVand CP than controls. HIV-1 p24 antigen was detected by immunostaining in gingival biopsies of 10 of the 12 patients but in no controls. Immune markers for T cells and antigen-presenting cells were also identified in most patients and some controls. CONCLUSION: These preliminary data showing the detection of HIV-1 p24 antigen in the gingival biopsies of a significant part of patients with HIV-1 and CP under cART together with the presence of immune cells, plead for the existence of a HIV-1 reservoir in the gingival tissue of this population.


Asunto(s)
Infecciones por VIH , VIH-1 , Estudios Transversales , Proteína p24 del Núcleo del VIH , Infecciones por VIH/tratamiento farmacológico , VIH-1/genética , Humanos , ARN , Carga Viral
12.
Transbound Emerg Dis ; 69(4): e823-e830, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34706153

RESUMEN

Since the start of the coronavirus disease of 2019 (COVID-19) pandemic, several episodes of human-to-animal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission have been described in different countries. The role of pets, especially domestic dogs, in the COVID-19 epidemiology is highly questionable and needs further investigation. In this study, we report a case of COVID-19 in a French dog living in close contact with its owners who were COVID-19 patients. The dog presented rhinitis and was sampled 1 week after its owners (a man and a woman) were tested positive for COVID-19. The nasal swabs for the dog tested remained positive for SARS-CoV-2 by reverse transcription quantitative real-time PCR (RT-qPCR) 1 month following the first diagnosis. Specific anti-SARS-CoV-2 antibodies were detectable 12 days after the first diagnosis and persisted for at least 5 months as tested using enzyme-linked immunoassay (ELISA) and automated western blotting. The whole-genome sequences from the dog and its owners were 99%-100% identical (with the man and the woman's sequences, respectively) and matched the B.1.160 variant of concern (Marseille-4 variant), the most widespread in France at the time the dog was infected. This study documents the first detection of B.1.160 in pets (a dog) in France, and the first canine genome recovery of the B.1.160 variant of global concern. Moreover, given the enhanced infectivity and transmissibility of the Marseille-4 variant for humans, this case also highlights the risk that pets may potentially play a significant role in SARS-CoV-2 outbreaks and may transmit the infection to humans. We have evidence of human-to-dog transmission of the Marseille-4 variant since the owners were first to be infected. Finally, owners and veterinarians must be vigilent for canine COVID-19 when dogs are presented with respiratory clinical signs.


Asunto(s)
COVID-19 , Enfermedades de los Perros , Animales , Anticuerpos Antivirales , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/veterinaria , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/epidemiología , Perros , Femenino , Humanos , Pandemias/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , SARS-CoV-2/genética
13.
Curr Res Microb Sci ; 2: 100034, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34841325

RESUMEN

To understand the dynamics of methanogens in the human intestinal microbiota, we investigated the presence of methanogens in meconium using a polyphasic approach including microscopy and PCR-sequencing in 33 meconium samples collected from 33 pre-term neonates, in accordance with current ethics regulation. In the presence of negative controls, 90.9% samples were real-time PCR-positive for methanogens and 69.7 % were PCR-sequencing positive, identified as Methanobrevibacter (M.) smithii. Further, auto-fluorescent analysis detected methanogens in the two meconium samples analyzed, with a morphology suggesting M. smithii. Multispacer Sequence Typing found M. smithii genotypes ST1 and ST2, previously described as intestinal microbiota inhabitants. C-section delivery and non-use of peripartum antibiotics significantly correlated with PCR-detection of methanogens in meconium. These data position M. smithii among the early inhabitants of the human gut, detectable immediately after birth and suggest the contribution of methanogens to the perinatal development of intestinal microbiota and physiology.

14.
Microorganisms ; 9(10)2021 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-34683485

RESUMEN

Little is known about the dynamic of HIV-1 shedding and resistance profiles in the female genital reservoir after antiretroviral therapy (ART) initiation in resource-limited countries (RLCs), which is critical for evaluating the residual sexual HIV-1 transmission risk. The present study aimed to evaluate the efficacy of 1 year duration ART at blood and genital levels in females newly diagnosed for HIV-1 from three centers in Bamako, Mali. Seventy-eight consenting females were enrolled at the time of their HIV-1 infection diagnosis. HIV-1 RNA loads (Abbott Real-Time HIV-1 assay) were tested in blood and cervicovaginal fluids (CVF) before and 12 months after ART initiation. Primary and acquired resistances to ART were evaluated by ViroseqTM HIV-1 genotyping assay. The vaginal microbiota was analyzed using IonTorrentTM NGS technology (Thermo Fisher Scientific). Proportions of primary drug resistance mutations in blood and CVF were 13.4% and 25%, respectively. Discrepant profiles were observed in 25% of paired blood/CVF samples. The acquired resistance rate was 3.1% in blood. At month 12, undetectable HIV-1 RNA load was reached in 84.6% and 75% of blood and CVF samples, respectively. A vaginal dysbiosis was associated with HIV RNA shedding. Our findings emphasize the need of reinforcing education to improve retention in care system, as well as the necessity of regular virological monitoring before and during ART and of implementing vaginal dysbiosis diagnosis and treatment in RLCs.

15.
One Health ; 13: 100293, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34377760

RESUMEN

Dogs are occasionally susceptible to SARS-CoV-2, developing few or no clinical signs. Epidemiological surveillance of SARS-CoV-2 in dogs requires testing to distinguish it from other canine coronaviruses. In the last year, significant advances have been made in the diagnosis of SARS-CoV-2, allowing its surveillance in both human and animal populations. Here, using ELISA and automated western blotting (AWB) assays, we performed a longitudinal study on 809 apparently healthy dogs from different regions of France to investigate anti-SARS-CoV-2 antibodies. There were three main groups: (i) 356 dogs sampled once before the pandemic, (ii) 235 dogs sampled once during the pandemic, and (iii) 218 dogs, including 82 dogs sampled twice (before and during the pandemic), 125 dogs sampled twice during the pandemic and 11 dogs sampled three times (once before and twice during the pandemic). Using ELISA, seroprevalence was significantly higher during the pandemic [5.5% (25/453)] than during the pre-pandemic period [1.1% (5/449)]. Among the 218 dogs sampled twice, at least 8 ELISA-seroconversions were observed. ELISA positive pre-pandemic sera were not confirmed in serial tests by AWB, indicating possible ELISA cross-reactivity, probably with other canine coronaviruses. A significant difference was observed between these two serological tests (Q = 88, p = 0.008). A clear correlation was observed between SARS-CoV-2 seroprevalence in dogs and the incidence of SARS-CoV-2 infection in human population from the same area. AWB could be used as a second line assay to confirm the doubtful and discrepant ELISA results in dogs. Our results confirm the previous experimental models regarding the susceptibility of dogs to SARS-CoV-2, suggesting that viral transmission from and between dogs is weak or absent. However, the new variants with multiple mutations could adapt to dogs; this hypothesis cannot be ruled out in the absence of genomic data on SARS-CoV-2 from dogs.

16.
Microorganisms ; 9(4)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921300

RESUMEN

BACKGROUND: The incidence of poliovirus has been significantly reduced by as much as 99.9% globally. Alongside this, however, vaccine-associated paralytic poliomyelitis has emerged. Previously, our team reported in the Lésio-Louna-Léfini Nature Reserve (Republic of Congo) the presence of a new Enterovirus C (Ibou002) in a male gorilla that was put away because of clinical symptoms of facial paralysis. This new virus, isolated was from the stool samples of this gorilla but also from the excrement of an eco-guardian, is very similar to Coxsackievirus (EV-C99) as well as poliovirus 1 and 2. We hypothesised that these symptoms might be due to poliovirus infection. To test our hypothesis, we developed and optimised a non-invasive immunoassay for the detection of Enterovirus-specific antibodies in gorilla faeces that could be useful for routine serosurveillance in such cases. METHODS: In order to assess the potential role of poliovirus infection, we have developed and optimised a protocol, based on the lyophilisation and solubilisation of small volumes of stool extracts from 16 gorilla and 3 humans, to detect specific antibodies by western blot and ELISA. RESULTS: First, total immunoglobulins were detected in the concentrated stool extracts. Specific antibodies were then detected in 4/16 gorilla samples and 2/3 human samples by western blot using both the polio vaccine antigen and the Ibou002 antigen and by ELISA using the polio vaccine antigen. Humoral responses were greater with the Ibou002 antigen. CONCLUSION: We therefore suggest that this recombinant virus could lead to a polio-like disease in the endangered western lowland gorilla. The development of a non-invasive approach to detect microorganism-specific immunoglobulins from faecal samples opens numerous prospects for application in zoonotic infectious diseases and could revolutionise the screening of animals for important emerging infections, such as Ebola fever, rabies and coronavirus infections.

19.
J Infect Dis ; 222(12): 1985-1996, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32941618

RESUMEN

BACKGROUND: An unbiased approach to SARS-CoV-2-induced immune dysregulation has not been undertaken so far. We aimed to identify previously unreported immune markers able to discriminate COVID-19 patients from healthy controls and to predict mild and severe disease. METHODS: An observational, prospective, multicentric study was conducted in patients with confirmed mild/moderate (n = 7) and severe (n = 19) COVID-19. Immunophenotyping of whole-blood leukocytes was performed in patients upon hospital ward or intensive care unit admission and in healthy controls (n = 25). Clinically relevant associations were identified through unsupervised analysis. RESULTS: Granulocytic (neutrophil, eosinophil, and basophil) markers were enriched during COVID-19 and discriminated between patients with mild and severe disease. Increased counts of CD15+CD16+ neutrophils, decreased granulocytic expression of integrin CD11b, and Th2-related CRTH2 downregulation in eosinophils and basophils established a COVID-19 signature. Severity was associated with emergence of PD-L1 checkpoint expression in basophils and eosinophils. This granulocytic signature was accompanied by monocyte and lymphocyte immunoparalysis. Correlation with validated clinical scores supported pathophysiological relevance. CONCLUSIONS: Phenotypic markers of circulating granulocytes are strong discriminators between infected and uninfected individuals as well as between severity stages. COVID-19 alters the frequency and functional phenotypes of granulocyte subsets with emergence of CRTH2 as a disease biomarker.


Asunto(s)
COVID-19/inmunología , Granulocitos/inmunología , Receptores Inmunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Adulto , Anciano , Biomarcadores/metabolismo , Antígeno CD11b/inmunología , COVID-19/sangre , COVID-19/diagnóstico , Femenino , Francia , Humanos , Inmunofenotipificación , Recuento de Leucocitos , Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Estudios Prospectivos , SARS-CoV-2 , Índice de Severidad de la Enfermedad
20.
Clin Rev Allergy Immunol ; 57(3): 456-466, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31522353

RESUMEN

Archaea, which form one of four domains of life alongside Eukarya, Bacteria, and giant viruses, have long been neglected as components of the human microbiota and potential opportunistic infectious pathogens. In this review, we focus on methanogenic Archaea, which rely on hydrogen for their metabolism and growth. On one hand, methanogenic Archaea in the gut are functional associates of the fermentative digestion of dietary fibers, favoring the production of beneficial short-chain fatty acids and likely contributing to the weaning reaction during the neonatal window of opportunity. On the other hand, methanogenic Archaea trigger the activation of innate and adaptive responses and the generation of specific T and B cells in animals and humans. In mouse models, lung hypersensitivity reactions can be induced by inhaled methanogenic Archaea mimicking human professional exposure to organic dust. Changes in methanogenic Archaea of the microbiota are detected in an array of dysimmune conditions comprising inflammatory bowel disease, obesity, malnutrition, anorexia, colorectal cancer, and diverticulosis. At the subcellular level, methanogenic Archaea are activators of the TLR8-dependent NLRP3 inflammasome, modulate the release of antimicrobial peptides and drive the production of proinflammatory, Th-1, Th-2, and Th-17 cytokines. Our objective was to introduce the most recent and major pieces of evidence supporting the involvement of Archaea in the balance between health and dysimmune diseases, with a particular focus on atopic and allergic conditions.


Asunto(s)
Alérgenos/inmunología , Archaea/inmunología , Hipersensibilidad/etiología , Animales , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno/inmunología , Humanos , Hipersensibilidad/diagnóstico , Microbiota/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA