Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36080693

RESUMEN

Prediction of mechanical properties is an essential part of material design. State-of-the-art simulation-based prediction requires data on microstructure and inter-component interactions of material. However, due to high costs and time limitations, such parameters, which are especially required for the simulation of advanced properties, are not always available. This paper proposes a data-driven approach to predicting the labor-consuming fracture toughness based on a series of standard, easy-to-measure mechanical characteristics. Three supervised machine-learning (ML) models (artificial neural networks, a random forest algorithm, and gradient boosting) were designed and tested for the prediction of mechanical properties of pultruded composites. A considerable dataset of mechanical properties was acquired as results of standard tensile, compression, flexure, in-plane shear, and Charpy tests and utilized as the input to predict the fracture toughness. Furthermore, this study investigated the correlations between the obtained mechanical characteristics. Analysis of ML performance showed that fracture toughness had the highest correlations with longitudinal bending and transverse tension and a strong correlation with the longitudinal compression modulus and tensile strength. The gradient boosting decision tree-based algorithms demonstrated the best prediction performance for fracture toughness, with an MSE less than 10% of the average value, providing a prediction within the range of experimental error. The ML algorithms showed potential in terms of determining which macro-level parameters can be used to predict micro-level material characteristics and how. The results provide inspiration for future pultruded composite material design and can enhance the numerical simulations of material.

2.
ACS Appl Mater Interfaces ; 14(16): 18866-18876, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35418224

RESUMEN

Stretchable and flexible electronics has attracted broad attention over the last years. Nanocomposites based on elastomers and carbon nanotubes are a promising material for soft electronic applications. Despite the fact that single-walled carbon nanotube (SWCNT) based nanocomposites often demonstrate superior properties, the vast majority of the studies were devoted to those based on multiwalled carbon nanotubes (MWCNTs) mainly because of their higher availability and easier processing procedures. Moreover, high weight concentrations of MWCNTs are often required for high performance of the nanocomposites in electronic applications. Inspired by the recent drop in the SWCNT price, we have focused on fabrication of elastic nanocomposites with very low concentrations of SWCNTs to reduce the cost of nanocomposites further. In this work, we use a fast method of coagulation (antisolvent) precipitation to fabricate elastic composites based on thermoplastic polyurethane (TPU) and SWCNTs with a homogeneous distribution of SWCNTs in bulk TPU. Applicability of the approach is confirmed by extra low percolation threshold of 0.006 wt % and, as a consequence, by the state-of-the-art performance of fabricated elastic nanocomposites at very low SWCNT concentrations for strain sensing (gauge factor of 82 at 0.05 wt %) and EMI shielding (efficiency of 30 dB mm-1 at 0.01 wt %).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...