Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Genet ; 15: 1377204, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694876

RESUMEN

Climate change-induced environmental stress significantly affects crop yield and quality. In response to environmental stressors, plants use defence mechanisms and growth suppression, creating a resource trade-off between the stress response and development. Although stress-responsive genes have been widely engineered to enhance crop stress tolerance, there is still limited understanding of the interplay between stress signalling and plant growth, a research topic that can provide promising targets for crop genetic improvement. This review focuses on Cytokinin Response Factors (CRFs) transcription factor's role in the balance between abiotic stress adaptation and sustained growth. CRFs, known for their involvement in cytokinin signalling and abiotic stress responses, emerge as potential targets for delaying senescence and mitigating yield penalties under abiotic stress conditions. Understanding the molecular mechanisms regulated by CRFs paves the way for decoupling stress responses from growth inhibition, thus allowing the development of crops that can adapt to abiotic stress without compromising development. This review highlights the importance of unravelling CRF-mediated pathways to address the growing need for resilient crops in the face of evolving climatic conditions.

2.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37047580

RESUMEN

In plants, priming allows a more rapid and robust response to recurring stresses. However, while the nature of plant response to a single stress can affect the subsequent response to the same stress has been deeply studied, considerably less is known on how the priming effect due to one stress can help plants cope with subsequent different stresses, a situation that can be found in natural ecosystems. Here, we investigate the potential priming effects in Arabidopsis plants subjected to a high light (HL) stress followed by a drought (D) stress. The cross-stress tolerance was assessed at the physiological and molecular levels. Our data demonstrated that HL mediated transcriptional priming on the expression of specific stress response genes. Furthermore, this priming effect involves both ABA-dependent and ABA-independent responses, as also supported by reduced expression of these genes in the aba1-3 mutant compared to the wild type. We have also assessed several physiological parameters with the aim of seeing if gene expression coincides with any physiological changes. Overall, the results from the physiological measurements suggested that these physiological processes did not experience metabolic changes in response to the stresses. In addition, we show that the H3K4me3 epigenetic mark could be a good candidate as an epigenetic mark in priming response. Overall, our results help to elucidate how HL-mediated priming can limit D-stress and enhance plant responses to stress.


Asunto(s)
Ácido Abscísico , Adaptación Fisiológica , Arabidopsis , Resistencia a la Sequía , Sequías , Reguladores del Crecimiento de las Plantas , Estrés Fisiológico , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Transcripción Genética , Estrés Fisiológico/genética , Luz , Resistencia a la Sequía/genética , Epigénesis Genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Adaptación Fisiológica/genética
3.
Methods Mol Biol ; 2581: 31-42, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36413308

RESUMEN

CRL (Cullin-Ring ubiquitin ligases) are the major class of plant E3 ubiquitin ligases. Immunoprecipitation-based methods are useful techniques for revealing interactions among Cullin-Ring Ligase (CRL) subunits or between CRLs and other proteins, as well as for detecting poly-ubiquitin modifications of the CRLs themselves. Here, we describe two immunoprecipitation (IP) procedures suitable for CRLs in Arabidopsis: (1) a procedure for IP analysis of CRL subunits and their interactors and a second procedure for in vivo ubiquitination analysis of the CRLs. Both protocols can be divided into two major steps: (1) preparation of cell extracts without disruption of protein interactions and (2) affinity purification of the protein complexes and subsequent detection. We provide a thorough description of all the steps, as well as advice on how to choose proper buffers for these analyses. We also suggest a series of negative controls that can be used to verify the specificity of the procedure.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Plantones/metabolismo , Proteínas Cullin/metabolismo , Ubiquitina/metabolismo , Inmunoprecipitación
5.
Nat Commun ; 13(1): 810, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145090

RESUMEN

N-terminal protein acetylation (NTA) is a prevalent protein modification essential for viability in animals and plants. The dominant executor of NTA is the ribosome tethered Nα-acetyltransferase A (NatA) complex. However, the impact of NatA on protein fate is still enigmatic. Here, we demonstrate that depletion of NatA activity leads to a 4-fold increase in global protein turnover via the ubiquitin-proteasome system in Arabidopsis. Surprisingly, a concomitant increase in translation, actioned via enhanced Target-of-Rapamycin activity, is also observed, implying that defective NTA triggers feedback mechanisms to maintain steady-state protein abundance. Quantitative analysis of the proteome, the translatome, and the ubiquitome reveals that NatA substrates account for the bulk of this enhanced turnover. A targeted analysis of NatA substrate stability uncovers that NTA absence triggers protein destabilization via a previously undescribed and widely conserved nonAc/N-degron in plants. Hence, the imprinting of the proteome with acetylation marks is essential for coordinating proteome stability.


Asunto(s)
Acetiltransferasas/metabolismo , Plantas/metabolismo , Proteoma/metabolismo , Acetilación , Acetiltransferasas/genética , Animales , Arabidopsis/metabolismo , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa A N-Terminal/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/genética , Ribosomas/metabolismo
6.
New Phytol ; 229(6): 3303-3317, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33216996

RESUMEN

DNA methylation plays crucial roles in cellular development and stress responses through gene regulation and genome stability control. Precise regulation of DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), the de novo Arabidopsis DNA methyltransferase, is crucial to maintain DNA methylation homeostasis to ensure genome integrity. Compared with the extensive studies on DRM2 targeting mechanisms, little information is known regarding the quality control of DRM2 itself. Here, we conducted yeast two-hybrid screen assay and identified an E3 ligase, COP9 INTERACTING F-BOX KELCH 1 (CFK1), as a novel DRM2-interacting partner and targets DRM2 for degradation via the ubiquitin-26S proteasome pathway in Arabidopsis thaliana. We also performed whole genome bisulfite sequencing (BS-seq) to determine the biological significance of CFK1-mediated DRM2 degradation. Loss-of-function CFK1 leads to increased DRM2 protein abundance and overexpression of CFK1 showed reduced DRM2 protein levels. Consistently, CFK1 overexpression induces genome-wide CHH hypomethylation and transcriptional de-repression at specific DRM2 target loci. This study uncovered a distinct mechanism regulating de novo DNA methyltransferase by CFK1 to control DNA methylation level.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Metiltransferasas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN , Metilación de ADN/genética , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas , Metiltransferasas/metabolismo
7.
Plant J ; 103(1): 379-394, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32142184

RESUMEN

In Arabidopsis, stamen elongation, which ensures male fertility, is controlled by the auxin response factor ARF8, which regulates the expression of the auxin repressor IAA19. Here, we uncover a role for light in controlling stamen elongation. By an extensive genetic and molecular analysis we show that the repressor of light signaling COP1, through its targets HY5 and HYH, controls stamen elongation, and that HY5 - oppositely to ARF8 - directly represses the expression of IAA19 in stamens. In addition, we show that in closed flower buds, when light is shielded by sepals and petals, the blue light receptors CRY1/CRY2 repress stamen elongation. Coherently, at flower disclosure and in subsequent stages, stamen elongation is repressed by the red and far-red light receptors PHYA/PHYB. In conclusion, different light qualities - sequentially perceived by specific photoreceptors - and the downstream COP1-HY5/HYH module finely tune auxin-induced stamen elongation and thus male fertility.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Criptocromos/fisiología , Proteínas de Unión al ADN/fisiología , Flores/crecimiento & desarrollo , Fitocromo/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Criptocromos/metabolismo , Proteínas de Unión al ADN/metabolismo , Flores/metabolismo , Flores/efectos de la radiación , Luz , Fitocromo/metabolismo , Fitocromo A/metabolismo , Fitocromo A/fisiología , Fitocromo B/metabolismo , Fitocromo B/fisiología , Ubiquitina-Proteína Ligasas/metabolismo
8.
Plant Cell ; 30(3): 620-637, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29514943

RESUMEN

In addition to the full-length transcript ARF8.1, a splice variant (ARF8.2) of the auxin response factor gene ARF8 has been reported. Here, we identified an intron-retaining variant of ARF8.2, ARF8.4, whose translated product is imported into the nucleus and has tissue-specific localization in Arabidopsis thaliana By inducibly expressing each variant in arf8-7 flowers, we show that ARF8.4 fully complements the short-stamen phenotype of the mutant and restores the expression of AUX/IAA19, encoding a key regulator of stamen elongation. By contrast, the expression of ARF8.2 and ARF8.1 had minor or no effects on arf8-7 stamen elongation and AUX/IAA19 expression. Coexpression of ARF8.2 and ARF8.4 in both the wild type and arf8-7 caused premature anther dehiscence: We show that ARF8.2 is responsible for increased expression of the jasmonic acid biosynthetic gene DAD1 and that ARF8.4 is responsible for premature endothecium lignification due to precocious expression of transcription factor gene MYB26 Finally, we show that ARF8.4 binds to specific auxin-related sequences in both the AUX/IAA19 and MYB26 promoters and activates their transcription more efficiently than ARF8.2. Our data suggest that ARF8.4 is a tissue-specific functional splice variant that controls filament elongation and endothecium lignification by directly regulating key genes involved in these processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Flores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Flores/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
9.
Methods Mol Biol ; 1450: 11-21, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27424742

RESUMEN

CRL (Cullin-RING ubiquitin ligase) is the major class of plant E3 ubiquitin ligases. Immunoprecipitation-based methods are useful techniques for revealing interactions among Cullin-RING Ligase (CRL) subunits or between CRLs and other proteins, as well as for detecting poly-ubiquitin modifications of the CRLs themselves. Here, we describe two immunoprecipitation (IP) procedures suitable for CRLs in Arabidopsis: a procedure for IP analysis of CRL subunits and their interactors and a second procedure for in vivo ubiquitination analysis of the CRLs. Both protocols can be divided into two major steps: (1) preparation of cell extracts without disruption of protein interactions and (2) affinity purification of the protein complexes and subsequent detection. We provide a thorough description of all the steps, as well as advice on how to choose proper buffers for these analyses. We also suggest a series of negative controls that can be used to verify the specificity of the procedure.


Asunto(s)
Proteínas Cullin/aislamiento & purificación , Biología Molecular/métodos , Ubiquitina-Proteína Ligasas/química , Arabidopsis/enzimología , Proteínas Cullin/química , Plantones/química , Plantones/enzimología , Ubiquitinación
10.
Plant J ; 85(3): 348-61, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26708041

RESUMEN

Abscisic acid (ABA) and gibberellins (GAs) are plant hormones which antagonistically mediate numerous physiological processes, and their optimal balance is essential for normal plant development. However, the molecular mechanism underlying ABA and GA antagonism still needs to be determined. Here, we report that ABA-INSENSITIVE 4 (ABI4) is a central factor in GA/ABA homeostasis and antagonism in post-germination stages. ABI4 overexpression in Arabidopsis (OE-ABI4) leads to developmental defects including a decrease in plant height and poor seed production. The transcription of a key ABA biosynthetic gene, NCED6, and of a key GA catabolic gene, GA2ox7, is significantly enhanced by ABI4 overexpression. ABI4 activates NCED6 and GA2ox7 transcription by directly binding to the promoters, and genetic analysis revealed that mutation in these two genes partially rescues the dwarf phenotype of ABI4 overexpressing plants. Consistently, ABI4 overexpressing seedlings have a lower GA/ABA ratio than the wild type. We further show that ABA induces GA2ox7 transcription while GA represses NCED6 expression in an ABI4-dependent manner; and that ABA stabilizes the ABI4 protein whereas GA promotes its degradation. Taken together, these results suggest that ABA and GA antagonize each other by oppositely acting on ABI4 transcript and protein levels.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Antagonismo de Drogas , Genes Reporteros , Pleiotropía Genética , Germinación , Homeostasis , Modelos Biológicos , Mutación , Fenotipo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Plantones/genética , Plantones/fisiología , Semillas/genética , Semillas/fisiología , Factores de Transcripción/genética
11.
Mol Plant ; 8(11): 1623-34, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26277260

RESUMEN

Cullin-RING E3 ligases (CRLs) regulate different aspects of plant development and are activated by modification of their cullin subunit with the ubiquitin-like protein NEDD8 (NEural precursor cell expressed Developmentally Down-regulated 8) (neddylation) and deactivated by NEDD8 removal (deneddylation). The constitutively photomorphogenic9 (COP9) signalosome (CSN) acts as a molecular switch of CRLs activity by reverting their neddylation status, but its contribution to embryonic and early seedling development remains poorly characterized. Here, we analyzed the phenotypic defects of csn mutants and monitored the cullin deneddylation/neddylation ratio during embryonic and early seedling development. We show that while csn mutants can complete embryogenesis (albeit at a slower pace than wild-type) and are able to germinate (albeit at a reduced rate), they progressively lose meristem activity upon germination until they become unable to sustain growth. We also show that the majority of cullin proteins are progressively neddylated during the late stages of seed maturation and become deneddylated upon seed germination. This developmentally regulated shift in the cullin neddylation status is absent in csn mutants. We conclude that the CSN and its cullin deneddylation activity are required to sustain postembryonic meristem function in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Meristema/metabolismo , Arabidopsis/embriología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Cullin/metabolismo , Germinación , Mutación , Raíces de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo
12.
BMC Plant Biol ; 15: 72, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25850831

RESUMEN

BACKGROUND: The transcription factor DOF AFFECTING GERMINATION1 (DAG1) is a repressor of the light-mediated seed germination process. DAG1 acts downstream PHYTOCHROME INTERACTING FACTOR3-LIKE 5 (PIL5), the master repressor, and negatively regulates gibberellin biosynthesis by directly repressing the biosynthetic gene AtGA3ox1. The Dof protein DOF AFFECTING GERMINATION (DAG2) shares a high degree of aminoacidic identity with DAG1. While DAG1 inactivation considerably increases the germination capability of seeds, the dag2 mutant has seeds with a germination potential substantially lower than the wild-type, indicating that these factors may play opposite roles in seed germination. RESULTS: We show here that DAG2 expression is positively regulated by environmental factors triggering germination, whereas its expression is repressed by PIL5 and DAG1; by Chromatin Immuno Precipitation (ChIP) analysis we prove that DAG1 directly regulates DAG2. In addition, we show that Red light significantly reduces germination of dag2 mutant seeds. CONCLUSIONS: In agreement with the seed germination phenotype of the dag2 mutant previously published, the present data prove that DAG2 is a positive regulator of the light-mediated seed germination process, and particularly reveal that this protein plays its main role downstream of PIL5 and DAG1 in the phytochrome B (phyB)-mediated pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Proteínas de Unión al ADN/metabolismo , Germinación/efectos de la radiación , Luz , Proteínas Represoras/metabolismo , Semillas/embriología , Factores de Transcripción/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/genética , Oscuridad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas , Germinación/genética , Giberelinas/metabolismo , Giberelinas/farmacología , Mutación/genética , Fitocromo B/metabolismo , Semillas/efectos de la radiación , Factores de Transcripción/genética
13.
Plant J ; 82(1): 81-92, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25704231

RESUMEN

Salt stress is a detrimental factor for plant growth and development. The response to salt stress has been shown to involve components in the intracellular trafficking system, as well as components of the ubiquitin-proteasome system (UPS). In this article, we have identified in Arabidopsis thaliana a little reported ubiquitin ligase involved in salt-stress response, which we named STRF1 (Salt Tolerance RING Finger 1). STRF1 is a member of RING-H2 finger proteins and we demonstrate that it has ubiquitin ligase activity in vitro. We also show that STRF1 localizes mainly at the plasma membrane and at the intracellular endosomes. strf1-1 loss-of-function mutant seedlings exhibit accelerated endocytosis in roots, and have altered expression of several genes involved in the membrane trafficking system. Moreover, protein trafficking inhibitor, brefeldin A (BFA), treatment has increased BFA bodies in strf1-1 mutant. This mutant also showed increased tolerance to salt, ionic and osmotic stresses, reduced accumulation of reactive oxygen species during salt stress, and increased expression of AtRbohD, which encodes a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase involved in H2 O2 production. We conclude that STRF1 is a membrane trafficking-related ubiquitin ligase, which helps the plant to respond to salt stress by monitoring intracellular membrane trafficking and reactive oxygen species (ROS) production.


Asunto(s)
Arabidopsis/enzimología , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brefeldino A/farmacología , Membrana Celular/enzimología , Endosomas/enzimología , Membranas Intracelulares/metabolismo , Mutación , Presión Osmótica , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas , Dominios RING Finger , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Cloruro de Sodio/farmacología , Ubiquitina-Proteína Ligasas/genética
15.
FEBS J ; 281(1): 175-90, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24164706

RESUMEN

The COP9 signalosome (CSN) is a highly conserved eukaryotic protein complex which regulates the cullin RING family of ubiquitin ligases and carries out a deneddylase activity that resides in subunit 5 (CSN5). Whereas CSN activity is essential for the development of higher eukaryotes, several unicellular fungi including the budding yeast Saccharomyces cerevisiae can survive without a functional CSN. Nevertheless, the budding yeast CSN is biochemically active and deletion mutants of each of its subunits exhibit deficiency in cullins deneddylation, although the biological context of this activity is still unknown in this organism. To further characterize CSN function in budding yeast, we present here a transcriptomic and proteomic analysis of a S. cerevisiae strain deleted in the CSN5/RRI1 gene (hereafter referred to as CSN5), coding for the only canonical subunit of the complex. We show that Csn5 is involved in modulation of the genes controlling amino acid and lipid metabolism and especially ergosterol biosynthesis. These alterations in gene expression correlate with the lower ergosterol levels and increased intracellular zinc content which we observed in csn5 null mutant cells. We show that some of these regulatory effects of Csn5, in particular the control of isoprenoid biosynthesis, are conserved through evolution, since similar transcriptomic and/or proteomic effects of csn5 mutation were previously observed in other eukaryotic organisms such as Aspergillus nidulans, Arabidopsis thaliana and Drosophila melanogaster. Our results suggest that the diverged budding yeast CSN is more conserved than was previously thought.


Asunto(s)
Proteínas Cullin/metabolismo , Perfilación de la Expresión Génica , Metabolismo de los Lípidos , Metaloendopeptidasas/metabolismo , Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Elementos de Transición/metabolismo , Biomarcadores/metabolismo , Western Blotting , Complejo del Señalosoma COP9 , Cromatografía de Gases , Cromatografía Liquida , Ergosterol/metabolismo , Metaloendopeptidasas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Espectrometría de Masas en Tándem , Zinc/metabolismo
16.
Mol Plant ; 6(5): 1616-29, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23475998

RESUMEN

The regulation of protein turnover by the ubiquitin proteasome system (UPS) is a major posttranslational mechanism in eukaryotes. One of the key components of the UPS, the COP9 signalosome (CSN), regulates 'cullin-ring' E3 ubiquitin ligases. In plants, CSN participates in diverse cellular and developmental processes, ranging from light signaling to cell cycle control. In this work, we isolated a new plant-specific CSN-interacting F-box protein, which we denominated CFK1 (COP9 INTERACTING F-BOX KELCH 1). We show that, in Arabidopsis thaliana, CFK1 is a component of a functional ubiquitin ligase complex. We also show that CFK1 stability is regulated by CSN and by proteasome-dependent proteolysis, and that light induces accumulation of the CFK1 transcript in the hypocotyl. Analysis of CFK1 knockdown, mutant, and overexpressing seedlings indicates that CFK1 promotes hypocotyl elongation by increasing cell size. Reduction of CSN levels enhances the short hypocotyl phenotype of CFK1-depleted seedlings, while complete loss of CSN activity suppresses the long-hypocotyl phenotype of CFK1-overexpressing seedlings. We propose that CFK1 (and its regulation by CSN) is a novel component of the cellular mechanisms controlling hypocotyl elongation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas F-Box/metabolismo , Hipocótilo/crecimiento & desarrollo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Complejo del Señalosoma COP9 , Tamaño de la Célula/efectos de la radiación , Regulación hacia Abajo/efectos de la radiación , Proteínas F-Box/química , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas/genética , Hipocótilo/genética , Hipocótilo/efectos de la radiación , Luz , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Mutación/genética , Péptido Hidrolasas/metabolismo , Fenotipo , Plantas Modificadas Genéticamente , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica/efectos de la radiación , Proteolisis/efectos de la radiación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Ligasas SKP Cullina F-box/genética , Ubiquitinación/efectos de la radiación
17.
Plant Sci ; 203-204: 89-97, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23415332

RESUMEN

Two paralogous complexes, the proteasome lid and the COP9 signalosome (CSN), have diverged from a common ancestor; yet fulfill distinctive roles within the ubiquitin-proteasome sphere. The CSN regulates the largest family of E3 ubiquitin ligases, called CRLs (Cullin-RING ubiquitin Ligases), while the lid is a subcomplex of the 26S proteasome, a proteolytic machinery responsible for the degradation of ubiquitinated proteins. Remarkably, in many organisms, several subunits of both complexes are duplicated, a circumstance that can hypothetically increase the number of different complexes that can be formed. Duplication, however, is not the only complexity trait within the lid and the CSN, because many of their subunits are not fully committed only to one of the two complexes, but they are able to associate with both. Indeed, their corresponding mutants have features that can be due to the absence of more than one complex. This could be simply explained by the subunits being able to carry an identical function within more than one paralogous complex or by the subunits having a certain level of promiscuity, i.e. being able to carry more than one function, depending on the complex they are associating with. Recent data show that both options are possible and, although their functional relevance still needs to be fully uncovered, evidence is accumulating, which indicates a promiscuous trading of paralogous subunits, and suggests that this may occur transiently, and/or in response to particular environmental conditions.


Asunto(s)
Duplicación de Gen/genética , Complejos Multiproteicos/genética , Péptido Hidrolasas/genética , Proteínas de Plantas/genética , Plantas/genética , Complejo de la Endopetidasa Proteasomal/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Complejo del Señalosoma COP9 , Evolución Molecular , Modelos Genéticos , Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
18.
J Integr Plant Biol ; 55(1): 7-20, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23164365

RESUMEN

The shoot apical meristem (SAM) is a population of undifferentiated cells at the tip of the shoot axis that establishes early during plant embryogenesis and gives rise to all shoot organs throughout the plant's life. A plethora of different families of transcription factors (TFs) play a key role in establishing the equilibrium between cell differentiation and stem cell maintenance in the SAM. Fine tuning of these regulatory proteins is crucial for a proper and fast SAM response to environmental and hormonal cues, and for development progression. One effective way to rapidly inactivate TFs involves regulated proteolysis by the ubiquitin/26S proteasome system (UPS). However, a possible role of UPS-dependent protein degradation in the regulation of key SAM TFs has not been thoroughly investigated. Here, we summarize recent evidence supporting a role for the UPS in SAM maintenance and function. We integrate this survey with an in silico analysis of publicly-available microarray databases which identified ubiquitin ligases that are expressed in specific areas within the SAM, suggesting that they may regulate or act downstream of meristem-specific factors.


Asunto(s)
Meristema/fisiología , Complejo de la Endopetidasa Proteasomal/fisiología , Ubiquitina/fisiología
20.
J Biol Chem ; 287(50): 42031-41, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23086934

RESUMEN

The COP9 signalosome (CSN) is an evolutionarily conserved multi-protein complex that interfaces with the ubiquitin-proteasome pathway and plays critical developmental roles in both animals and plants. Although some subunits are present only in an ∼320-kDa complex-dependent form, other subunits are also detected in configurations distinct from the 8-subunit holocomplex. To date, the only known biochemical activity intrinsic to the complex, deneddylation of the Cullin subunits from Cullin-RING ubiquitin ligases, is assigned to CSN5. As an essential step to understanding the structure and assembly of a CSN5-containing subcomplex of the CSN, we reconstituted a CSN4-5-6-7 subcomplex. The core of the subcomplex is based on a stable heterotrimeric association of CSN7, CSN4, and CSN6, requiring coexpression in a bacterial reconstitution system. To this heterotrimer, we could then add CSN5 in vitro to reconstitute a quaternary complex. Using biochemical and biophysical methods, we identified pairwise and combinatorial interactions necessary for the formation of the CSN4-5-6-7 subcomplex. The subcomplex is stabilized by three types of interactions: MPN-MPN between CSN5 and CSN6, PCI-PCI between CSN4 and CSN7, and interactions mediated through the CSN6 C terminus with CSN4 and CSN7. CSN8 was also found to interact with the CSN4-6-7 core. These data provide a strong framework for further investigation of the organization and assembly of this pivotal regulatory complex.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/metabolismo , Subunidades de Proteína/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Complejo del Señalosoma COP9 , Péptidos y Proteínas de Señalización Intracelular/genética , Complejos Multiproteicos/genética , Péptido Hidrolasas/genética , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA