Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8477, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123561

RESUMEN

Following acute retinal damage, zebrafish possess the ability to regenerate all neuronal subtypes through Müller glia (MG) reprogramming and asymmetric cell division that produces a multipotent Müller glia-derived neuronal progenitor cell (MGPC). This raises three key questions. First, do MG reprogram to a developmental retinal progenitor cell (RPC) state? Second, to what extent does regeneration recapitulate retinal development? And finally, does loss of different retinal cell subtypes induce unique MG regeneration responses? We examined these questions by performing single-nuclear and single-cell RNA-Seq and ATAC-Seq in both developing and regenerating retinas. Here we show that injury induces MG to reprogram to a state similar to late-stage RPCs. However, there are major transcriptional differences between MGPCs and RPCs, as well as major transcriptional differences between activated MG and MGPCs when different retinal cell subtypes are damaged. Validation of candidate genes confirmed that loss of different subtypes induces differences in transcription factor gene expression and regeneration outcomes.


Asunto(s)
Redes Reguladoras de Genes , Pez Cebra , Animales , Pez Cebra/genética , Retina/metabolismo , Neurogénesis/genética , Neuroglía/metabolismo , Proliferación Celular/fisiología , Células Ependimogliales/metabolismo
2.
Res Sq ; 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37790324

RESUMEN

Following acute retinal damage, zebrafish possess the ability to regenerate all neuronal subtypes. This regeneration requires Müller glia (MG) to reprogram and divide asymmetrically to produce a multipotent Müller glia-derived neuronal progenitor cell (MGPC). This raises three key questions. First, does loss of different retinal cell subtypes induce unique MG regeneration responses? Second, do MG reprogram to a developmental retinal progenitor cell state? And finally, to what extent does regeneration recapitulate retinal development? We examined these questions by performing single-nuclear and single-cell RNA-Seq and ATAC-Seq in both developing and regenerating retinas. While MG reprogram to a state similar to late-stage retinal progenitors in developing retinas, there are transcriptional differences between reprogrammed MG/MGPCs and late progenitors, as well as reprogrammed MG in outer and inner retinal damage models. Validation of candidate genes confirmed that loss of different subtypes induces differences in transcription factor gene expression and regeneration outcomes. This work identifies major differences between gene regulatory networks activated following the selective loss of different subtypes of retina neurons, as well as between retinal regeneration and development.

3.
bioRxiv ; 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37609307

RESUMEN

Following acute retinal damage, zebrafish possess the ability to regenerate all neuronal subtypes. This regeneration requires Müller glia (MG) to reprogram and divide asymmetrically to produce a multipotent Müller glia-derived neuronal progenitor cell (MGPC). This raises three key questions. First, does loss of different retinal cell subtypes induce unique MG regeneration responses? Second, do MG reprogram to a developmental retinal progenitor cell state? And finally, to what extent does regeneration recapitulate retinal development? We examined these questions by performing single-nuclear and single-cell RNA-Seq and ATAC-Seq in both developing and regenerating retinas. While MG reprogram to a state similar to late-stage retinal progenitors in developing retinas, there are transcriptional differences between reprogrammed MG/MGPCs and late progenitors, as well as reprogrammed MG in outer and inner retinal damage models. Validation of candidate genes confirmed that loss of different subtypes induces differences in transcription factor gene expression and regeneration outcomes. This work identifies major differences between gene regulatory networks activated following the selective loss of different subtypes of retina neurons, as well as between retinal regeneration and development.

4.
Adv Exp Med Biol ; 1415: 309-317, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440050

RESUMEN

Nearly a billion people worldwide are affected by vision-impairing conditions, with retinal degenerative diseases being a major cause of blindness. Unfortunately, such diseases are often permanent and progressive, resulting in further degeneration and loss of sight, due to the human retina possessing little, if any, regenerative capacity. Despite numerous efforts and great progress being made to understand the molecular mechanisms of these diseases and possible therapies, the majority of investigations focused on cell-intrinsic factors. However, the microenvironment surrounding retinal cells throughout these processes also plays an important role, though our current understanding of its involvement remains limited. Here we present a brief overview of the current state of the field of extracellular matrix studies within the retina and its potential roles in retinal diseases and potential therapeutic approaches.


Asunto(s)
Matriz Extracelular , Degeneración Retiniana , Humanos , Proteínas de la Matriz Extracelular , Retina
5.
Front Cell Dev Biol ; 9: 802593, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096830

RESUMEN

Vertebrate retinal development follows a highly stereotyped pattern, in which the retinal progenitor cells (RPCs) give rise to all retinal types in a conserved temporal sequence. Ensuring the proper control over RPC cell cycle exit and re-entry is, therefore, crucially important for the generation of properly functioning retina. In this study, we demonstrate that laminins, indispensible ECM components, at the retinal surface, regulate the mechanisms determining whether RPCs generate proliferative or post-mitotic progeny. In vivo deletion of laminin ß2 in mice resulted in disturbing the RPC cell cycle dynamics, and premature cell cycle exit. Specifically, the RPC S-phase is shortened, with increased numbers of cells present in its late stages. This is followed by an accelerated G2-phase, leading to faster M-phase entry. Finally, the M-phase is extended, with RPCs dwelling longer in prophase. Addition of exogenous ß2-containing laminins to laminin ß2-deficient retinal explants restored the appropriate RPC cell cycle dynamics, as well as S and M-phase progression, leading to proper cell cycle re-entry. Moreover, we show that disruption of dystroglycan, a laminin receptor, phenocopies the laminin ß2 deletion cell cycle phenotype. Together, our findings suggest that dystroglycan-mediated ECM signaling plays a critical role in regulating the RPC cell cycle dynamics, and the ensuing cell fate decisions.

6.
J Neurosci ; 38(26): 5996-6010, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29853630

RESUMEN

Vertebrate retinal development follows a pattern during which retinal progenitor cells (RPCs) give rise to all retinal cell types in a highly conserved temporal sequence. RPC proliferation and cell cycle exit are tightly coordinated to ensure proper and timely production of each of the retinal cell types. Extracellular matrix (ECM) plays an important role in eye development, influencing RPC proliferation and differentiation. In this study, we demonstrate that laminins, key ECM components, in the inner limiting membrane, control mitotic spindle orientation by providing environmental cues to the RPCs. In vivo deletion of laminin ß2 in mice of both sexes results in a loss RPC basal processes and contact with the ECM, leading to a shift of the mitotic spindle pole orientation toward asymmetric cell divisions. This leads to decreased proliferation and premature RPC pool depletion, resulting in overproduction of rod photoreceptors at the expense of bipolar cells and Müller glia. Moreover, we show that deletion of laminin ß2 leads to disruption and mislocalization of its receptors: dystroglycan and ß1-integrin. Addition of exogenous ß2-containing laminins to laminin ß2-deficient retinal explants stabilizes the RPC basal processes and directs their mitotic spindle orientation toward symmetric divisions, leading to increased RPC proliferation, as well as restores proper receptor localization at the retinal surface. Finally, functional blocking of dystroglycan in wild-type retinal explants phenocopies laminin ß2 ablation. Our data suggest that dystroglycan-mediated signaling between RPCs and the ECM is of key importance in controlling critical developmental events during retinogenesis.SIGNIFICANCE STATEMENT The mechanisms governing retinogenesis are subject to both intrinsic and extrinsic signaling cues. Although the role of intrinsic signaling has been the subject of many studies, our understanding of the role of the microenvironment in retinal development remains unclear. Using a combination of in vivo and ex vivo approaches, we demonstrate that laminins, key extracellular matrix components, provide signaling cues that control retinal progenitor cell attachment to the basement membrane, mitotic axis, proliferation, and fate adoption. Moreover, we identify, for the first time, dystroglycan as the receptor responsible for directing retinal progenitor cell mitotic spindle orientation. Our data suggest a mechanism where dystroglycan-mediated signaling between the cell and the extracellular matrix controls the proliferative potential of progenitors in the developing CNS.


Asunto(s)
Distroglicanos/metabolismo , Matriz Extracelular/metabolismo , Laminina/metabolismo , Neurogénesis/fisiología , Neuronas Retinianas/citología , Animales , Polaridad Celular/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/citología , Huso Acromático/metabolismo
7.
PLoS One ; 8(7): e66942, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874404

RESUMEN

tRNase Z, a member of the metallo-ß-lactamase family, endonucleolytically removes the pre-tRNA 3' trailer in a step central to tRNA maturation. The short form (tRNase Z(S)) is the only one found in bacteria and archaebacteria and is also present in some eukaryotes. The homologous long form (tRNase Z(L)), exclusively found in eukaryotes, consists of related amino- and carboxy-domains, suggesting that tRNase Z(L) arose from a tandem duplication of tRNase Z(S) followed by interdependent divergence of the domains. X-ray crystallographic structures of tRNase Z(S) reveal a flexible arm (FA) extruded from the body of tRNase Z remote from the active site that binds tRNA far from the scissile bond. No tRNase Z(L) structures have been solved; alternative biophysical studies are therefore needed to illuminate its functional characteristics. Structural analyses of tRNase Z(L) performed by limited proteolysis, two dimensional gel electrophoresis and mass spectrometry establish stability of the amino and carboxy domains and flexibility of the FA and inter-domain tether, with implications for tRNase Z(L) function.


Asunto(s)
Endorribonucleasas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Endorribonucleasas/química , Humanos , Espectrometría de Masas , Datos de Secuencia Molecular , Proteolisis , Homología de Secuencia de Aminoácido
8.
RNA Biol ; 9(3): 283-91, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22336717

RESUMEN

Numerous mutations in the mitochondrial genome are associated with maternally transmitted diseases and syndromes that affect muscle and other high energy-demand tissues. The mitochondrial genome encodes 13 polypeptides, 2 rRNAs and 22 interspersed tRNAs via long bidirectional polycistronic primary transcripts, requiring precise excision of the tRNAs. Despite making up only ~10% of the mitochondrial genome, tRNA genes harbor most of the pathogenesis-related mutations. tRNase Z endonucleolytically removes the pre-tRNA 3' trailer. The flexible arm of tRNase Z recognizes and binds the elbow (including the T-loop) of pre-tRNA. Pathogenesis-related T-loop mutations in mitochondrial tRNAs could thus affect tRNA structure, reduce tRNase Z binding and 3' processing, and consequently slow mitochondrial protein synthesis. Here we inspect the effects of pathogenesis-related mutations in the T-loops of mitochondrial tRNAs on pre-tRNA structure and tRNase Z processing. Increases in K(M) arising from 59A > G substitutions in mitochondrial tRNA(Gly) and tRNA(Ile) accompany changes in T-loop structure, suggesting impaired substrate binding to enzyme.


Asunto(s)
Mutación , Conformación de Ácido Nucleico , Procesamiento de Término de ARN 3' , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN/genética , ARN/metabolismo , Secuencia de Bases , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , ARN/química , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mitocondrial , ARN de Transferencia/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...