RESUMEN
Microbubbles (MBs) combined with focused ultrasound (FUS) has emerged as a promising noninvasive technique to permeabilize the blood-brain barrier (BBB) for drug delivery into the brain. However, the safety and biological consequences of BBB opening (BBBO) remain incompletely understood. This study aims to investigate the effects of two parameters mediating BBBO: microbubble volume dose (MVD) and mechanical index (MI). High-resolution MRI-guided FUS was employed in mouse brains to assess BBBO by manipulating these two parameters. Afterward, the sterile inflammatory response (SIR) was studied 6 h post-FUS treatment. Results demonstrated that both MVD and MI significantly influenced the extent of BBBO, with higher MVD and MI leading to increased permeability. Moreover, RNA sequencing revealed upregulation of major inflammatory pathways and immune cell infiltration after BBBO, indicating the presence and extent of SIR. Gene set enrichment analysis identified 12 gene sets associated with inflammatory responses that were significantly upregulated at higher MVD or MI. A therapeutic window was established between therapeutically relevant BBBO and the onset of SIR, providing operating regimes to avoid damage from stimulation of the NFκB pathway via TNFÉ signaling to apoptosis. These results contribute to the optimization and standardization of BBB opening parameters for safe and effective drug delivery to the brain and further elucidate the underlying molecular mechanisms driving sterile inflammation.
Asunto(s)
Barrera Hematoencefálica , Inflamación , Microburbujas , Barrera Hematoencefálica/metabolismo , Animales , Ratones , Inflamación/metabolismo , Sistemas de Liberación de Medicamentos , Imagen por Resonancia Magnética , Encéfalo/metabolismo , Encéfalo/patología , MasculinoRESUMEN
In recent years, steady progress has been made in synthesizing and characterizing engineered nanoparticles, resulting in several approved drugs and multiple promising candidates in clinical trials. Regulatory agencies such as the Food and Drug Administration and the European Medicines Agency released important guidance documents facilitating nanoparticle-based drug product development, particularly in the context of liposomes and lipid-based carriers. Even with the progress achieved, it is clear that many barriers must still be overcome to accelerate translation into the clinic. At the recent conference workshop "Mechanisms and Barriers in Nanomedicine" in May 2023 in Colorado, U.S.A., leading experts discussed the formulation, physiological, immunological, regulatory, clinical, and educational barriers. This position paper invites open, unrestricted, nonproprietary discussion among senior faculty, young investigators, and students to trigger ideas and concepts to move the field forward.
Asunto(s)
Nanomedicina , Humanos , Portadores de Fármacos/química , Liposomas/química , Nanopartículas/química , Estados UnidosRESUMEN
Dynamic regulation of gene expression is fundamental for cellular adaptation to exogenous stressors. P-TEFb-mediated pause-release of RNA polymerase II (Pol II) is a conserved regulatory mechanism for synchronous transcriptional induction in response to heat shock, but this pro-survival role has not been examined in the applied context of cancer therapy. Using model systems of pediatric high-grade glioma, we show that rapid genome-wide reorganization of active chromatin facilitates P-TEFb-mediated nascent transcriptional induction within hours of exposure to therapeutic ionizing radiation. Concurrent inhibition of P-TEFb disrupts this chromatin reorganization and blunts transcriptional induction, abrogating key adaptive programs such as DNA damage repair and cell cycle regulation. This combination demonstrates a potent, synergistic therapeutic potential agnostic of glioma subtype, leading to a marked induction of tumor cell apoptosis and prolongation of xenograft survival. These studies reveal a central role for P-TEFb underpinning the early adaptive response to radiotherapy, opening avenues for combinatorial treatment in these lethal malignancies.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Glioma , Factor B de Elongación Transcripcional Positiva , Humanos , Glioma/radioterapia , Glioma/genética , Glioma/metabolismo , Glioma/patología , Animales , Factor B de Elongación Transcripcional Positiva/metabolismo , Factor B de Elongación Transcripcional Positiva/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Ratones , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Transcripción Genética/efectos de la radiación , Apoptosis/efectos de la radiación , Apoptosis/genética , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Reparación del ADN/efectos de la radiación , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: This study further evaluated the safety and efficacy of the combination of alisertib and sapanisertib in an expansion cohort of patients, including a subset of patients with refractory pancreatic adenocarcinoma, with further evaluation of the pharmacodynamic characteristics of combination therapy. METHODS: Twenty patients with refractory solid tumors and 11 patients with pancreatic adenocarcinoma were treated at the recommended phase 2 dose of alisertib and sapanisertib. Adverse events and disease response were assessed. Patients in the expansion cohort were treated with a 7-day lead-in of either alisertib or sapanisertib prior to combination therapy, with tumor tissue biopsy and serial functional imaging performed for correlative analysis. RESULTS: Toxicity across treatment groups was overall similar to prior studies. One partial response to treatment was observed in a patient with ER positive breast cancer, and a patient with pancreatic cancer experienced prolonged stable disease. In an additional cohort of pancreatic cancer patients, treatment response was modest. Correlative analysis revealed variability in markers of apoptosis and immune cell infiltrate according to lead-in therapy and response. CONCLUSIONS: Dual targeting of Aurora A kinase and mTOR resulted in marginal clinical benefit in a population of patients with refractory solid tumors, including pancreatic adenocarcinoma, though individual patients experienced significant response to therapy. Correlatives indicate apoptotic response and tumor immune cell infiltrate may affect clinical outcomes.
RESUMEN
PURPOSE: There are no effective treatment strategies for children with highest-risk posterior fossa group A ependymoma (PFA). Chromosome 1q gains (1q+) are present in approximately 25% of newly diagnosed PFA tumors, and this number doubles at recurrence. Seventy percent of children with chromosome 1q+ PFA will die because of the tumor, highlighting the urgent need to develop new therapeutic strategies for this population. EXPERIMENTAL DESIGN: In this study, we utilize 1q+ PFA in vitro and in vivo models to test the efficacy of combination radiation and chemotherapy in a preclinical setting. RESULTS: 5-fluorouracil (5FU) enhances radiotherapy in 1q+ PFA cell lines. Specifically, 5FU increases p53 activity mediated by the extra copy of UCK2 located on chromosome 1q in 1q+ PFA. Experimental downregulation of UCK2 resulted in decreased 5FU sensitivity in 1q+ PFA cells. In in vitro studies, a combination of 5FU, retinoid tretinoin (ATRA), and radiation provided the greatest reduction in cellular proliferation and greatest increase in markers of apoptosis in 1q+ PFA cell lines compared with other treatment arms. Similarly, in vivo experiments demonstrated significant enhancement of survival in mice treated with combination radiation and 5FU and ATRA. CONCLUSIONS: These results are the first to identify a chromosome 1q+ specific therapy approach in 1q+ PFA. Existing phase I studies have already established single-agent pediatric safety and dosages of 5FU and ATRA, allowing for expedited clinical application as phase II trials for children with high-risk PFA.
Asunto(s)
Ependimoma , Neoplasias Infratentoriales , Niño , Humanos , Animales , Ratones , Neoplasias Infratentoriales/genética , Neoplasias Infratentoriales/patología , Neoplasias Infratentoriales/terapia , Resultado del Tratamiento , Ependimoma/genética , Ependimoma/terapia , Fluorouracilo , Cromosomas/metabolismoRESUMEN
Microbubbles (MBs) combined with focused ultrasound (FUS) have emerged as a promising noninvasive technique to permeabilize the blood-brain barrier (BBB) for drug delivery to the brain. However, the safety and biological consequences of BBB opening remain incompletely understood. This study investigates the effects of varying microbubble volume doses (MVD) and ultrasound mechanical indices (MI) on BBB opening and the sterile inflammatory response (SIR) using high-resolution ultra-high field MRI-guided FUS in mouse brains. The results demonstrate that both MVD and MI significantly influence the extent of BBB opening, with higher doses and mechanical indices leading to increased permeability. Moreover, RNA sequencing reveals upregulated inflammatory pathways and immune cell infiltration after BBB opening, suggesting the presence and extent of SIR. Gene set enrichment analysis identifies 12 gene sets associated with inflammatory responses that are upregulated at higher doses of MVD or MI. A therapeutic window is established between significant BBB opening and the onset of SIR, providing operating regimes for avoiding each three classes of increasing damage from stimulation of the NFκB pathway via TNFL signaling to apoptosis. This study contributes to the optimization and standardization of BBB opening parameters for safe and effective drug delivery to the brain and sheds light on the underlying molecular mechanisms of the sterile inflammatory response. Significance Statement: The significance of this study lies in its comprehensive investigation of microbubble-facilitated focused ultrasound for blood-brain barrier (BBB) opening. By systematically exploring various combinations of microbubble volume doses and ultrasound mechanical indices, the study reveals their direct impact on the extent of BBB permeability and the induction of sterile inflammatory response (SIR). The establishment of a therapeutic window between significant BBB opening and the onset of SIR provides critical insights for safe and targeted drug delivery to the brain. These findings advance our understanding of the biological consequences of BBB opening and contribute to optimizing parameters for clinical applications, thus minimizing potential health risks, and maximizing the therapeutic potential of this technique.
RESUMEN
Background: Diffuse midline glioma (DMG) is an aggressive pediatric central nervous system tumor with strong metastatic potential. As localized treatment of the primary tumor improves, metastatic disease is becoming a more important factor in treatment. We hypothesized that we could model craniospinal irradiation (CSI) through a DMG patient-derived xenograft (PDX) model and that CSI would limit metastatic tumor. Methods: We used a BT245 murine orthotopic DMG PDX model for this work. We developed a protocol and specialized platform to deliver craniospinal irradiation (CSI) (4 Gy x2 days) with a pontine boost (4 Gy x2 days) and compared metastatic disease by pathology, bioluminescence, and MRI to mice treated with focal radiation only (4 Gy x4 days) or no radiation. Results: Mice receiving CSI plus boost showed minimal spinal and brain leptomeningeal metastatic disease by bioluminescence, MRI, and pathology compared to mice receiving radiation to the pons only or no radiation. Conclusion: In a DMG PDX model, CSI+boost minimizes tumor dissemination compared to focal radiation. By expanding effective DMG treatment to the entire neuraxis, CSI has potential as a key component to combination, multimodality treatment for DMG designed to achieve long-term survival once novel therapies definitively demonstrate improved local control.
RESUMEN
BACKGROUND: The human peripheral nervous system embodies anatomical, physiologic, and diagnostic perplexities that remain unexplained. Yet in the course of human history, there are no mechanisms, such as computed tomography (CT) or radiography, by which to image the peripheral nervous system in vivo using a contrast agent that is identified by ionizing radiation, which would aid in surgical navigation, diagnostic radiology, and basic science thereof. METHODS: A novel class of contrast was created by linking iodine to lidocaine. The radiodensity of 0.5% experimental contrast molecule was compared with a control of 1% lidocaine by placing 1.5-mL aliquots of each liquid into centrifuge tubes and performing micro-computed tomography (micro-CT) synchronously under identical settings. Physiologic binding to the sciatic nerve was evaluated by injecting 10 mg of the experimental contrast and 10 mg of the control into the contralateral sciatic nerve, and documenting loss of hindlimb function and recovery. In vivo visualization of the sciatic nerve was evaluated by injecting 10 mg of experimental contrast or control into either sciatic nerve and imaging the hindlimbs under identical conditions using micro-CT. RESULTS: The mean Hounsfield unit of the contrast was 56.09 compared with -0.48 for control (116-fold increase, P = .0001). Hindlimb paresis revealed similar degree of paresis, baseline recovery, and time to recovery. In vivo enhancement between the contralateral sciatic nerves was similar. CONCLUSION: Iodinated lidocaine offers a viable mechanism for in vivo peripheral nerve imaging using CT; however, it requires modification to improve in vivo radiodensity.
RESUMEN
Successive traumatic brain injuries (TBIs) exacerbate neuroinflammation and oxidative stress. No therapeutics exist for populations at high risk of repetitive mild TBIs (rmTBIs). We explored the preventative therapeutic effects of Immunocal®, a cysteine-rich whey protein supplement and glutathione (GSH) precursor, following rmTBI and repetitive mild-moderate TBI (rmmTBI). Populations that suffer rmTBIs largely go undiagnosed and untreated; therefore, we first examined the potential therapeutic effect of Immunocal® long-term following rmTBI. Mice were treated with Immunocal® prior to, during, and following rmTBI induced by controlled cortical impact until analysis at 2 weeks, 2 months, and 6 months following the last rmTBI. Astrogliosis and microgliosis were measured in cortex at each time point and edema and macrophage infiltration by MRI were analyzed at 2 months post-rmTBI. Immunocal® significantly reduced astrogliosis at 2 weeks and 2 months post-rmTBI. Macrophage activation was observed at 2 months post-rmTBI but Immunocal® had no significant effect on this endpoint. We did not observe significant microgliosis or edema after rmTBI. The dosing regimen was repeated in mice subjected to rmmTBI; however, using this experimental paradigm, we examined the preventative therapeutic effects of Immunocal® at a much earlier timepoint because populations that suffer more severe rmmTBIs are more likely to receive acute diagnosis and treatment. Increases in astrogliosis, microgliosis, and serum neurofilament light (NfL), as well as reductions in the GSH:GSSG ratio, were observed 72 h post-rmmTBI. Immunocal® only significantly reduced microgliosis after rmmTBI. In summary, we report that astrogliosis persists for 2 months post-rmTBI and that inflammation, neuronal damage, and altered redox homeostasis present acutely following rmmTBI. Immunocal® significantly limited gliosis in these models; however, its neuroprotection was partially overwhelmed by repetitive injury. Treatments that modulate distinct aspects of TBI pathophysiology, used in combination with GSH precursors like Immunocal®, may show more protection in these repetitive TBI models.
Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Ratones , Animales , Gliosis , Lesiones Traumáticas del Encéfalo/complicaciones , Glutatión/metabolismo , Suplementos Dietéticos , Modelos Animales de EnfermedadRESUMEN
SIGNIFICANCE STATEMENT: Histologic quantification of complement C3 deposits in kidney biopsies provides prognostic information in patients with glomerulonephritis. Unfortunately, kidney biopsies are invasive procedures that cannot be performed regularly and only provide a snapshot of a small portion of one kidney at the time of sampling. We have developed a method to noninvasively detect specific C3 fragment deposition throughout both kidneys, using a monoclonal antibody targeting tissue-bound iC3b/C3d linked to a bioluminescent resonance energy transfer construct that emits near-infrared light. In a mouse model of glomerulonephritis, the probe detected iC3b/C3d in kidneys of live mice by bioluminescent imaging. This demonstrates that noninvasive imaging with an anti-iC3b/C3d probe can be used to monitor inflammation in the kidneys.
Asunto(s)
Complemento C3b , Glomerulonefritis , Animales , Ratones , Complemento C3d , Riñón/diagnóstico por imagen , Anticuerpos MonoclonalesRESUMEN
Dynamic regulation of gene expression is fundamental for cellular adaptation to exogenous stressors. PTEFb-mediated pause-release of RNA polymerase II (Pol II) is a conserved regulatory mechanism for synchronous transcriptional induction in response to heat shock, but this pro-survival role has not been examined in the applied context of cancer therapy. Using model systems of pediatric high-grade glioma, we show that rapid genome-wide reorganization of active chromatin facilitates PTEFb-mediated nascent transcriptional induction within hours of exposure to therapeutic ionizing radiation. Concurrent inhibition of PTEFb disrupts this chromatin reorganization and blunts transcriptional induction, abrogating key adaptive programs such as DNA damage repair and cell cycle regulation. This combination demonstrates a potent, synergistic therapeutic potential agnostic of glioma subtype, leading to a marked induction of tumor cell apoptosis and prolongation of xenograft survival. These studies reveal a central role for PTEFb underpinning the early adaptive response to radiotherapy, opening new avenues for combinatorial treatment in these lethal malignancies.
RESUMEN
The anterior cruciate ligament (ACL) is the most commonly injured knee ligament. Surgical reconstruction is the gold standard treatment for ACL ruptures, but 20-50% of patients develop post-traumatic osteoarthritis (PTOA). ACL rupture is thus a well-recognized etiology of PTOA; however, little is known about the initial relationship between ligamentous injury and subsequent PTOA. The goals of this project were to: (1) develop both partial and full models of mid-substance ACL rupture in male and female mice using non-invasive mechanical methods by means of tibial displacement; and (2) to characterize early PTOA changes in the full ACL rupture model. A custom material testing system was utilized to induce either partial or full ACL rupture by means of tibial displacement at 1.6 or 2.0 mm, respectively. Mice were euthanized either (i) immediately post-injury to determine rupture success rates or (ii) 14 days post-injury to evaluate early PTOA progression following full ACL rupture. Our models demonstrated high efficacy in inciting either full or partial ACL rupture in male and female mice within the mid-substance of the ACL. These tools can be utilized for preclinical testing of potential therapeutics and to further our understanding of PTOA following ACL rupture.
Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Osteoartritis , Ratones , Masculino , Femenino , Animales , Lesiones del Ligamento Cruzado Anterior/cirugía , Ligamento Cruzado Anterior , Articulación de la Rodilla , Tibia , Rotura/complicacionesRESUMEN
Progression of autosomal dominant polycystic kidney disease (ADPKD) is modified by metabolic defects and obesity. Indeed, reduced food intake slows cyst growth in preclinical rodent studies. Here, we demonstrate the feasibility of daily caloric restriction (DCR) and intermittent fasting (IMF) in a cohort of overweight or obese patients with ADPKD. Clinically significant weight loss occurred with both DCR and IMF; however, weight loss was greater and adherence and tolerability were better with DCR. Further, slowed kidney growth correlated with body weight and visceral adiposity loss independent of dietary regimen. Similarly, we compared the therapeutic efficacy of DCR, IMF, and time restricted feeding (TRF) using an orthologous ADPKD mouse model. Only ADPKD animals on DCR lost significant weight and showed slowed cyst growth compared to ad libitum, IMF, or TRF feeding. Collectively, this supports therapeutic feasibility of caloric restriction in ADPKD, with potential efficacy benefits driven by weight loss.
RESUMEN
In animal models of cancer, oncologic imaging has evolved from a simple assessment of tumor location and size to sophisticated multimodality exploration of molecular, physiologic, genetic, immunologic, and biochemical events at microscopic to macroscopic levels, performed noninvasively and sometimes in real time. Here, we briefly review animal imaging technology and molecular imaging probes together with selected applications from recent literature. Fast and sensitive optical imaging is primarily used to track luciferase-expressing tumor cells, image molecular targets with fluorescence probes, and to report on metabolic and physiologic phenotypes using smart switchable luminescent probes. MicroPET/single-photon emission CT have proven to be two of the most translational modalities for molecular and metabolic imaging of cancers: immuno-PET is a promising and rapidly evolving area of imaging research. Sophisticated MRI techniques provide high-resolution images of small metastases, tumor inflammation, perfusion, oxygenation, and acidity. Disseminated tumors to the bone and lung are easily detected by microCT, while ultrasound provides real-time visualization of tumor vasculature and perfusion. Recently available photoacoustic imaging provides real-time evaluation of vascular patency, oxygenation, and nanoparticle distributions. New hybrid instruments, such as PET-MRI, promise more convenient combination of the capabilities of each modality, enabling enhanced research efficacy and throughput.
Asunto(s)
Imagen Multimodal/métodos , Neoplasias Experimentales/diagnóstico por imagen , Animales , Biomarcadores de Tumor/análisis , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias Experimentales/patología , Técnicas Fotoacústicas , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X/métodosRESUMEN
Diffuse intrinsic pontine glioma (DIPG) is an incurable brain tumor of childhood characterized by histone mutations at lysine 27, which results in epigenomic dysregulation. There has been a failure to develop effective treatment for this tumor. Using a combined RNAi and chemical screen targeting epigenomic regulators, we identify the polycomb repressive complex 1 (PRC1) component BMI1 as a critical factor for DIPG tumor maintenance in vivo. BMI1 chromatin occupancy is enriched at genes associated with differentiation and tumor suppressors in DIPG cells. Inhibition of BMI1 decreases cell self-renewal and attenuates tumor growth due to induction of senescence. Prolonged BMI1 inhibition induces a senescence-associated secretory phenotype, which promotes tumor recurrence. Clearance of senescent cells using BH3 protein mimetics co-operates with BMI1 inhibition to enhance tumor cell killing in vivo.
Asunto(s)
Envejecimiento/genética , Glioma Pontino Intrínseco Difuso/genética , Complejo Represivo Polycomb 1/metabolismo , Astrocitoma/genética , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Neoplasias del Tronco Encefálico/genética , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Niño , Preescolar , Cromatina/genética , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Glioma Pontino Intrínseco Difuso/metabolismo , Epigenómica , Femenino , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Histonas/metabolismo , Humanos , Lisina/metabolismo , Masculino , Mutación , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Complejo Represivo Polycomb 1/antagonistas & inhibidores , Complejo Represivo Polycomb 1/genéticaRESUMEN
Hepatocellular carcinoma (HCC) is difficult to detect, carries a poor prognosis, and is one of few cancers with an increasing yearly incidence. Molecular defects in complement factor H (CFH), a critical regulatory protein of the complement alternative pathway (AP), are typically associated with inflammatory diseases of the eye and kidney. Little is known regarding the role of CFH in controlling complement activation within the liver. While studying aging CFH-deficient (fH-/-) mice, we observed spontaneous hepatic tumor formation in more than 50% of aged fH-/- males. Examination of fH-/- livers (3-24 months) for evidence of complement-mediated inflammation revealed widespread deposition of complement-activation fragments throughout the sinusoids, elevated transaminase levels, increased hepatic CD8+ and F4/80+ cells, overexpression of hepatic mRNA associated with inflammatory signaling pathways, steatosis, and increased collagen deposition. Immunostaining of human HCC biopsies revealed extensive deposition of complement fragments within the tumors. Investigating the Cancer Genome Atlas also revealed that increased CFH mRNA expression is associated with improved survival in patients with HCC, whereas mutations are associated with worse survival. These results indicate that CFH is critical for controlling complement activation in the liver, and in its absence, AP activation leads to chronic inflammation and promotes hepatic carcinogenesis.
Asunto(s)
Carcinoma Hepatocelular , Factor H de Complemento/deficiencia , Regulación Neoplásica de la Expresión Génica , Enfermedades por Deficiencia de Complemento Hereditario , Enfermedades Renales , Neoplasias Hepáticas , Hígado , Proteínas de Neoplasias , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Enfermedades por Deficiencia de Complemento Hereditario/genética , Enfermedades por Deficiencia de Complemento Hereditario/metabolismo , Enfermedades por Deficiencia de Complemento Hereditario/patología , Humanos , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Ratones Noqueados , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/metabolismoRESUMEN
Histone 3 gene mutations are the eponymous drivers in diffuse midline gliomas (DMGs), aggressive pediatric brain cancers for which no curative therapy currently exists. These recurrent oncohistones induce a global loss of repressive H3K27me3 residues and broad epigenetic dysregulation. In order to identify therapeutically targetable dependencies within this disease context, we performed an RNAi screen targeting epigenetic/chromatin-associated genes in patient-derived DMG cultures. This identified AFF4, the scaffold protein of the super elongation complex (SEC), as a molecular dependency in DMG. Interrogation of SEC function demonstrates a key role for maintaining clonogenic potential while promoting self-renewal of tumor stem cells. Small-molecule inhibition of SEC using clinically relevant CDK9 inhibitors restores regulatory RNA polymerase II pausing, promotes cellular differentiation, and leads to potent anti-tumor effect both in vitro and in patient-derived xenograft models. These studies present a rationale for further exploration of SEC inhibition as a promising therapeutic approach to this intractable disease.
Asunto(s)
Glioma/genética , Histonas/genética , Factores de Elongación Transcripcional/metabolismo , Encéfalo/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Cromatina/genética , Epigénesis Genética/genética , Epigenómica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Glioma/metabolismo , Histonas/metabolismo , Humanos , Factores de Elongación Transcripcional/genéticaRESUMEN
PURPOSE: The pulse line ion accelerator (PLIA) is a low-cost accelerator concept originally designed to accelerate heavy ions. Our group has been investigating the use of PLIA to accelerate light ions and believe a multi-stage PLIA could be useful for short half-life PET isotope production. The goal of this work was to develop a single prototype fast PLIA structure and demonstrate electromagnetic wave propagation using a high-voltage pulser. MATERIALS AND METHODS: A 1.6 m fast PLIA structure (wave speed > 107 m/s) was constructed along with a high-voltage, sinusoidal pulse generator. The latter uses capacitive voltage doubling and spark gap switching. A step-up transformer couples voltage from the pulser to the PLIA coil. Voltage measurements on the coil were made in air using a high-voltage resistive probe, while capacitive probes placed along the length of the PLIA were used to measure wave propagation with the PLIA structure filled with transformer oil. RESULTS: Voltage measurements acquired on the primary and secondary coils of the transformer coupler in air demonstrated a peak-to-peak voltage step-up of 4.2 relative to the pulser DC charging voltage. The maximum voltage time-rate-of-change on the PLIA coil was 0.76 × 1013 V/s. Capacitive probe measurements indicated voltage oscillations on the PLIA coil with half-period equal to 43 ± 0.9 ns and wave speed (with oil) of 1.2 × 107 m/s. Average and peak accelerating gradients were conservatively estimated to be 0.44 and 0.60 MV/m, respectively, with a charging voltage of 55 kV. Wave propagation was demonstrated at these gradients without flashover at a vacuum pressure of 9 × 10-6 Torr. Submerging the pulser in oil would allow for charging voltages up to 150 kV and produce accelerating gradients >1.2 MV/m. CONCLUSIONS: Use of a multi-stage, fast PLIA for light ion acceleration could provide a low-cost complement to cyclotrons for the production of short half-life isotopes used for PET imaging, including carbon-11, nitrogen-13, oxygen-15, and fluorine-18.
Asunto(s)
Fenómenos Electromagnéticos , Aceleradores de Partículas , Tomografía de Emisión de Positrones/instrumentaciónRESUMEN
Feraheme (ferumoxytol), a negatively charged, carboxymethyl dextran-coated ultrasmall superparamagnetic iron oxide nanoparticle (USPIO, 30 nm, -16 mV), is clinically approved as an iron supplement and is used off-label for magnetic resonance imaging (MRI) of macrophage-rich lesions, but the mechanism of recognition is not known. We investigated mechanisms of uptake of Feraheme by various types of macrophages in vitro and in vivo. The uptake by mouse peritoneal macrophages was not inhibited in complement-deficient serum. In contrast, the uptake of larger and less charged SPIO nanoworms (60 nm, -5 mV; 120 nm, -5 mV, respectively) was completely inhibited in complement deficient serum, which could be attributed to more C3 molecules bound per nanoparticle than Feraheme. The uptake of Feraheme in vitro was blocked by scavenger receptor (SR) inhibitor polyinosinic acid (PIA) and by antibody against scavenger receptor type A I/II (SR-AI/II). Antibodies against other SRs including MARCO, CD14, SR-BI, and CD11b had no effect on Feraheme uptake. Intraperitoneally administered PIA inhibited the peritoneal macrophage uptake of Feraheme in vivo. Nonmacrophage cells transfected with SR-AI plasmid efficiently internalized Feraheme but not noncharged ultrasmall SPIO of the same size (26 nm, -6 mV), suggesting that the anionic carboxymethyl groups of Feraheme are responsible for the SR-AI recognition. The uptake by nondifferentiated bone marrow derived macrophages (BMDM) and by BMDM differentiated into M1 (proinflammatory) and M2 (anti-inflammatory) types was efficiently inhibited by PIA and anti-SR-AI/II antibody. Interestingly, all BMDM types expressed similar levels of SR-AI/II. In conclusion, Feraheme is efficiently recognized via SR-AI/II but not via complement by different macrophage types. The recognition by the common phagocytic receptor has implications for specificity of imaging of macrophage subtypes.
Asunto(s)
Óxido Ferrosoférrico/metabolismo , Mediadores de Inflamación/metabolismo , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Receptores Depuradores de Clase A/metabolismo , Animales , Células Cultivadas , Femenino , Hematínicos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB CRESUMEN
BACKGROUND: Treatment for pediatric posterior fossa group A (PFA) ependymoma with gain of chromosome 1q (1q+) has not improved over the past decade owing partially to lack of clinically relevant models. We described the first 2 1q+ PFA cell lines, which have significantly enhanced our understanding of PFA tumor biology and provided a tool to identify specific 1q+ PFA therapies. However, cell lines do not accurately replicate the tumor microenvironment. Our present goal is to establish patient-derived xenograft (PDX) mouse models. METHODS: Disaggregated tumors from 2 1q+ PFA patients were injected into the flanks of NSG mice. Flank tumors were then transplanted into the fourth ventricle or lateral ventricle of NSG mice. Characterization of intracranial tumors was performed using imaging, histology, and bioinformatics. RESULTS: MAF-811_XC and MAF-928_XC established intracranially within the fourth ventricle and retained histological, methylomic, and transcriptomic features of primary patient tumors. We tested the feasibility of treating PDX mice with fractionated radiation or chemotherapy. Mice tolerated radiation despite significant tumor burden, and follow-up imaging confirmed radiation can reduce tumor size. Treatment with fluorouracil reduced tumor size but did not appear to prolong survival. CONCLUSIONS: MAF-811_XC and MAF-928_XC are novel, authentic, and reliable models for studying 1q+ PFA in vivo. Given the successful response to radiation, these models will be advantageous for testing clinically relevant combination therapies to develop future clinical trials for this high-risk subgroup of pediatric ependymoma.