Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1063807, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37032869

RESUMEN

Introduction: The low pregnancy rate by artificial insemination in sheep represents a fundamental challenge for breeding programs. In this species, oestrus synchronization is carried out by manipulating hormonal regimens through the insertion of progestogen intravaginal devices. This reproductive strategy may alter the vaginal microbiota affecting the artificial insemination outcome. Methods: In this study, we analyzed the vaginal microbiome of 94 vaginal swabs collected from 47 ewes with alternative treatments applied to the progesterone-releasing intravaginal devices (probiotic, maltodextrin, antibiotic and control), in two sample periods (before placing and after removing the devices). To our knowledge, this is the first study using nanopore-based metagenome sequencing for vaginal microbiome characterization in livestock. Results: Our results revealed a significant lower abundance of the genera Oenococcus (Firmicutes) and Neisseria (Proteobacteria) in pregnant compared to non-pregnant ewes. We also detected a significant lower abundance of Campylobacter in the group of samples treated with the probiotic. Discussion: Although the use of probiotics represents a promising practice to improve insemination results, the election of the suitable species and concentration requires further investigation. In addition, the use of progestogen in the synchronization devices seemed to increase the alpha-diversity and decrease the abundance of harmful microorganisms belonging to Gammaproteobacteria and Fusobacteriia classes, suggesting a beneficial effect of their use.

2.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36996265

RESUMEN

Reproductive fitness of rams is seasonal, showing the highest libido during short days coinciding with the ovarian cyclicity resumption in the ewe. However, the remarkable variation in sexual behavior between rams impair farm efficiency and profitability. Intending to identify in vivo sexual behavior biomarkers that may aid farmers to select active rams, transcriptome profiling of blood was carried out by analyzing samples from 6 sexually active (A) and 6 nonactive (NA) Rasa Aragonesa rams using RNA-Seq technique. A total of 14,078 genes were expressed in blood but only four genes were differentially expressed (FDR < 0.10) in the A vs. NA rams comparison. The genes, acrosin inhibitor 1 (ENSOARG00020023278) and SORCS2, were upregulated (log2FC > 1) in active rams, whereas the CRYL1 and immunoglobulin lambda-1 light chain isoform X47 (ENSOARG00020025518) genes were downregulated (log2FC < -1) in this same group. Gene set Enrichment Analysis (GSEA) identified 428 signaling pathways, predominantly related to biological processes. The lysosome pathway (GO:0005764) was the most enriched, and may affect fertility and sexual behavior, given the crucial role played by lysosomes in steroidogenesis, being the SORCS2 gene related to this signaling pathway. Furthermore, the enriched positive regulation of ERK1 and ERK2 cascade (GO:0070374) pathway is associated with reproductive phenotypes such as fertility via modulation of hypothalamic regulation and GnRH-mediated production of pituitary gonadotropins. Furthermore, external side of plasma membrane (GO:0009897), fibrillar center (GO:0001650), focal adhesion (GO:0005925), and lamellipodium (GO:0030027) pathways were also enriched, suggesting that some molecules of these pathways might also be involved in rams' sexual behavior. These results provide new clues for understanding the molecular regulation of sexual behavior in rams. Further investigations will be needed to confirm the functions of SORCS2 and CRYL1 in relation to sexual behavior.


Analyzing ram sexual behavior via blood transcriptome profiling can help to identify in vivo sexual behavior biomarkers as an innovative alternative to invasive and time-consuming methods in farms. Using RNA-sequencing technique, we compared 12 Rasa Aragonesa rams with different sexual behavior (6 sexually active and 6 nonactive) to identify differentially expressed genes (DEGs) in peripheral blood putatively responsible of libido differences between rams. Comparative analysis revealed four candidate genes and several signaling pathways related to sexual behavior such as lysosome, and positive regulation of the extracellular signal-regulated kinase 1/2 (ERK1 and ERK2) cascade. This data will be helpful for further investigations to understand the differences of sheep sexual behavior.


Asunto(s)
Conducta Sexual Animal , Transcriptoma , Animales , Femenino , Masculino , Fenotipo , Reproducción/genética , Conducta Sexual Animal/fisiología , Ovinos/genética , Oveja Doméstica , Cristalinas/genética , Receptores de Superficie Celular/genética
3.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36331073

RESUMEN

Reproductive seasonality is a limiting factor in sheep production. Sexual behavior is a key element in reproductive efficiency, and this function is regulated by the hypothalamus-pituitary-gonadal (HPG) axis. To understand the mechanisms of sexual behavior, transcriptomic sequencing technology was used to identify differentially expressed genes (DEGs) in the hypothalamus (HT), pars tuberalis (PT) and pineal gland (PG) in Rasa Aragonesa rams with different sexual behavior. Bioinformatics analysis of the 16,401 identified genes by RNA-Seq revealed 103 and 12 DEGs in the HT and the PG, respectively, at a false discovery rate (FDR) of 5% with an absolute value of expression ≥ 1 (log2FC). However, no DEGs were found in the PT. Functional annotation and pathway enrichment analysis showed that DEGs of HT were enriched mainly in neuroactive ligand-receptor interactions and signaling pathways, including notable candidate genes such as MTNR1A, CHRNA2, FSHB, LHB, GNRHR, AVP, PRL, PDYN, CGA, GABRD, and TSHB, which play a crucial role in sexual behavior. The GnRH and cAMP signaling pathways were also highlighted. In addition, gene set enrichment analysis (GSEA) identified potential pathways, dominated mainly by biological process category, that could be responsible for the differences in sexual behavior observed in rams. The intracellular protein transport and pattern specification process were enriched within the PT and the transcription factor binding and protein ubiquitination pathways for the PG. Thus, these pathways together may play an important role in the regulation of the sexual behavior in Rasa Aragonesa rams through the hypothalamic-pituitary-gonadal axis. The validation of 5 DEGs using reverse transcription quantitative polymerase chain reaction (RT-qPCR) showed expression patterns like the found with RNA-Seq. Overall, these results contribute to understanding the genomic basis of sexual behavior in rams. Our study demonstrates that multiple networks and pathways orchestrate sexual behavior in sheep.


Male sexual behavior is a key factor in reproduction, especially in seasonal breeders such as sheep. The identification of differentially expressed genes (DEGs) in brain regions involved in male reproduction and sexual behavior between rams with different sexual activity by RNA high-throughput sequencing can provide useful information to the sheep meat industry. This work aimed to determine the possible molecular mechanisms underlying the sexual behavior of Rasa Aragonesa rams by investigating transcriptional changes in the hypothalamus (HT), pars tuberalis (PT) and pineal gland (PG) between active (A) and nonactive (NA) rams. Comparative analysis revealed 103 and 12 DEGs between the A vs. NA comparison in the HT and the PG, respectively, but no DEGs were found in the PT. Gene ontology (GO) enrichment analysis of DEGs in HT samples revealed significant pathways, associated mainly with neuroactive ligand-receptor interactions, and the GnRH and cAMP signaling pathways. Furthermore, gene set enrichment analysis (GSEA) detected many overrepresented pathways related to sexual behavior via an interaction network within the hypothalamic-pituitary-gonadal axis. These data will be helpful for further investigations to look for mutations or functional single nucleotide polymorphisms (SNPs) that may be used for genetic assisted selection to improve sexual behavior in sheep.


Asunto(s)
Glándula Pineal , Transcriptoma , Ovinos/genética , Animales , Masculino , RNA-Seq/veterinaria , Hipotálamo/metabolismo , Oveja Doméstica , Fenotipo , Perfilación de la Expresión Génica/veterinaria
4.
Anim Biotechnol ; : 1-14, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36534535

RESUMEN

For understanding the molecular events underlying the follicular (F) and luteal (L) phases of estrous cycle, and anestrous (A) phase, the pars tuberalis (PT), and hypothalamus (HT) transcriptomes of 21 ewes were studied. In HT, 72 and 3 differential expression genes (DEGs) were found when comparing F vs. A and L vs. A, respectively. In PT, 6 and 4 DEGs were found in F vs. A and L vs. A comparisons, respectively. Enrichment analysis for DEGs between the F and A phases in the HT revealed significant clusters, mainly associated with actin-binding, and cytoskeleton, that are related to neural plasticity modulated by gonadal steroid hormones, as well as with oxytocin signaling. We found that DEGs in PT had higher differences in expression levels than those found in HT. In this sense, the ITLN was highly upregulated in the F and L vs. A phases, being MRPL57 and IRX4 highly downregulated in L vs. A comparison. The DDC gene in PT, related to LH regulation, was upregulated in the F phase. The gene set enrichment analysis (GSEA) revealed multiple pathways related to neurotransmission and neuronal plasticity. Our study reveals new candidate genes involved in the reproductive stages' transitions in seasonal sheep.

5.
Animals (Basel) ; 11(6)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34074014

RESUMEN

A genome-wide association study (GWAS) was performed to identify new single nucleotide polymorphisms (SNPs) and genes associated with mastitis resistance in Assaf sheep by using the Illumina Ovine Infinium® HD SNP BeadChip (680K). In total, 6173 records from 1894 multiparous Assaf ewes with at least three test day records and aged between 2 and 7 years old were used to estimate a corrected phenotype for somatic cell score (SCS). Then, 192 ewes were selected from the top (n = 96) and bottom (n = 96) tails of the corrected SCS phenotype distribution to be used in a GWAS. Although no significant SNPs were found at the genome level, four SNPs (rs419096188, rs415580501, rs410336647, and rs424642424) were significant at the chromosome level (FDR 10%) in two different regions of OAR19. The SNP rs419096188 was located in intron 1 of the NUP210 and close to the HDAC11 genes (61 kb apart), while the other three SNPs were totally linked and located 171 kb apart from the ARPP21 gene. These three genes were related to the immune system response. These results were validated in two SNPs (rs419096188 and rs424642424) in the total population (n = 1894) by Kompetitive Allele-Specific PCR (KASP) genotyping. Furthermore, rs419096188 was also associated with lactose content.

6.
Animals (Basel) ; 11(4)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921837

RESUMEN

A genome-wide association study (GWAS) was used to identify genomic regions influencing seasonality reproduction traits in Rasa Aragonesa sheep. Three traits associated with either ovarian function based on blood progesterone levels (total days of anoestrus and progesterone cycling months) or behavioral signs of oestrous (oestrous cycling months) were studied. The GWAS included 205 ewes genotyped using the 50k and 680k Illumina Ovine Beadchips. Only one SNP associated with the progesterone cycling months overcame the genome-wide significance level (rs404991855). Nine SNPs exhibited significant associations at the chromosome level, being the SNPs rs404991855 and rs418191944, that are located in the CD226 molecule (CD226) gene, associated with the three traits. This gene is related to reproductive diseases. Two other SNPs were located close to the neuropeptide Y (NPY) gene, which is involved in circadian rhythms. To validate the GWAS, partial characterization of both genes by Sanger sequencing, and genotyping of two synonymous and two nonsynonymous SNPs in the NPY and CD226 genes, respectively, were performed. SNP association analysis showed that only SNP rs404360094 in the exon 3 of the CD226 gene, which produces an amino acid substitution from asparagine (uncharged polar) to aspartic acid (acidic), was associated with the three seasonality traits. Our results suggest that the CD226 gene may be involved in the reproductive seasonality in Rasa Aragonesa.

7.
Animals (Basel) ; 10(12)2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33371230

RESUMEN

The aim of this study was to characterize and identify causative polymorphisms in the leptin receptor (LEPR) gene responsible for the seasonal variation of reproductive traits in sheep. Three reproductive seasonality traits were studied: the total days of anoestrous (TDA), the progesterone cycling months (P4CM) and the oestrous cycling months (OCM). In total, 18 SNPs were detected in 33 ewes with extreme values for TDA and OCM. Six SNPs were non-synonymous substitutions and two of them were predicted in silico as deleterious: rs596133197 and rs403578195. These polymorphisms were then validated in 239 ewes. The SNP rs403578195, located in exon 8 and leading to a change of alanine to glycine (Ala284Gly) in the extracellular domain of the protein, was associated with the OCM trait, being the G allele associated with a decrease of 12 percent of the OCM trait. Haplotype analyses also suggested the involvement of other non-synonymous SNP located in exon 20 (rs405459906). This SNP also produces an amino acid change (Lys1069Glu) in the intracellular domain of the protein and segregates independently of rs403578195. These results confirm for the first time the role of the LEPR gene in sheep reproductive seasonality.

8.
High Throughput ; 9(3)2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32640606

RESUMEN

To date, there is a lack of research into the vaginal and sperm microbiome and its bearing on artificial insemination (AI) success in the ovine species. Using hypervariable regions V3-V4 of the 16S rRNA, we describe, for the first time, the combined effect of the ovine microbiome of both females (50 ewes belonging to five herds) and males (five AI rams from an AI center) on AI outcome. Differences in microbiota abundance between pregnant and non-pregnant ewes and between ewes carrying progesterone-releasing intravaginal devices (PRID) with or without antibiotic were tested at different taxonomic levels. The antibiotic treatment applied with the PRID only altered Streptobacillus genus abundance, which was significantly lower in ewes carrying PRID with antibiotic. Mageebacillus, Histophilus, Actinobacilllus and Sneathia genera were significantly less abundant in pregnant ewes. In addition, these genera were more abundant in two farms with higher AI failure. Species of these genera such as Actinobacillus seminis and Histophilus somni have been associated with reproductive disorders in the ovine species. These genera were not present in the sperm samples of AI rams, but were found in the foreskin samples of rams belonging to herd 2 (with high AI failure rate) indicating that their presence in ewes' vagina could be due to prior transmission by natural mating with rams reared in the herd.

9.
Theriogenology ; 144: 107-111, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31927415

RESUMEN

A FecX-mutated allele called FecXR in the BMP15 gene has been described in Rasa aragonesa sheep. FecXR causes increased prolificacy when heterozygous and sterility when homozygous in ewes. However, highly prolific ewes without the FecXR allele have been found in this breed. Therefore, a genome-wide association study (GWAS) was performed in 158 ewes (tail H: N = 73, mean prolificacy ± standard deviation = 2.14 ± 0.26; tail L: N = 85, mean prolificacy = 1.06 ± 0.08) with the Ovine HD SNP BeadChip. In this analysis, the FecXGR allele was found to have genome-wide significance associated with prolificacy, first described in the Grivette sheep breed. We also identified a novel polymorphism in exon 2 of BMP15 in 9 high prolific ewes by Sanger sequencing. This new mutation, called FecXRA, is a SNP (Oar3.1_X: g. 50970948C > T; NM_001114767.1: c.1172C > T) that produces an amino acid substitution (ENSOART00000010201: p.T400I) that is predicted to be deleterious and to alter the predicted secondary structure of the mature protein. To confirm if this SNP had any the effect on prolificacy, we genotyped sires with known EBVs (Estimated Breeding Values), finding one hemizygous sire for the FecXRA allele with the highest EBV in the breeding program (effect on litter size at + 0.39 lamb per lambing). A very low frequency, ranging from 0.13 to 2%, was found for the FecXGR and FecXRA alleles in 3428 animals belonging to four different flocks. Finally, an association study was performed to validate and quantify the effects of the FecXGR and FecXRA alleles. Significant increased prolificacy of 0.52 ± 0.05, 0.42 ± 0.05 and 0.32 ± 0.01 were found when comparing FecXGR, FecXRA and FecXR heterozygous ewes to wild type homozygous ones. These effects are of the same order of magnitude as the effect of most of other known major genes for prolificacy. Only significant differences between FecXGR and FecXR were found among the three alleles associated with increased prolificacy. However, we cannot confirm the effect of the FecXRA allele at homozygous state because we did not find any homozygous ewes. These results confirm that these three alleles in the BMP15 gene that affect prolificacy co-segregate in Rasa aragonesa sheep.


Asunto(s)
Proteína Morfogenética Ósea 15/genética , Fertilidad/genética , Ovinos/genética , Animales , Estudio de Asociación del Genoma Completo , Genotipo , Mutación
10.
Animals (Basel) ; 9(12)2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31847301

RESUMEN

This work aimed to estimate genetic parameters for traits related to semen production and quality in Spanish dairy sheep breeds. For that, ejaculates of rams from Assaf, Churra, Latxa Cara Negra, Latxa Cara Rubia, and Manchega breeds were analyzed to measure volume, semen concentration, and motility. Estimates of variance components were obtained with multiple-trait animal models using the average information REML method in the BLUPF90 family of programs. Repeatability estimates for all the traits were also calculated, with values ranging from 0.077 to 0.304 for the motility and the semen concentration traits, respectively. Heritability estimates were of low to moderate magnitude, ranging from 0.014 (motility in Latxa Cara Rubia) to 0.198 (volume in Churra), although the estimates differed among the breeds. The estimated genetic correlations among the three semen traits showed adequate precision only in the MAN breed. The heritability estimates for the semen traits reported in the present paper suggest an adequate response to selection. The practical extension of these results to the other breeds studied here will be secondary to the estimation of more reliable genetic correlations in these breeds.

11.
Andrologia ; 50(10): e13115, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30043545

RESUMEN

The DNA repair capacity in the mature spermatozoa is highly compromised due to the base-excision repair (BER) route being truncated. In the mature spermatozoa, only the first enzyme of the route (OGG1) is present. Consequently, reduced activity of the enzymes of the BER route both during spermatogenesis and in the mature spermatozoa may be detrimental for fertility. The objective of our study was to investigate the correlation between two representative SNPs of those enzymes, SNPs OGG1 Ser326Cys (rs1052133) and XRCC1 Arg399Gln (rs25487) and male infertility. A total of 313 seminal samples from infertile patients and 80 from donors with proven fertility were included in the study. All samples were subjected to a regular sperm analysis and genotyped using the PCR-RFLP system. We found significant differences in the genotype frequencies between patients and donors for the XRCC1 Arg399Gln polymorphism (χ2(2) = 8.7, p = 0.013), with the Gln allele showing a protective role and for the OGG1 Ser326Cys polymorphism between normozoospermic and non-normozoospermic patients (χ2(2) = 12.67, p = 0.002) with the Cys allele showing a detrimental effect over concentration. In conclusion, our study shows that polymorphisms in the genes coding for the DNA damage repair enzymes may be associated with poor sperm parameters and male infertility.


Asunto(s)
ADN Glicosilasas/genética , Reparación del ADN/genética , Predisposición Genética a la Enfermedad , Infertilidad Masculina/genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Alelos , Estudios de Casos y Controles , Genotipo , Humanos , Infertilidad Masculina/diagnóstico , Masculino , Polimorfismo de Nucleótido Simple , Análisis de Semen
12.
BMC Vet Res ; 6: 40, 2010 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-20649987

RESUMEN

BACKGROUND: Conjugated linoleic acids (CLAs) are receiving increasing attention because of their beneficial effects on human health, with milk and meat products derived from ruminants as important sources of CLA in the human diet. SCD gene is responsible for some of the variation in CLA concentration in adipose tissues, and PPARgamma, PPARalpha and SREBP1 genes are regulator of SCD gene. The aim of this work was to evaluate the effect of the feeding system on fatty acid composition, CLA content and relative gene expression of Delta9-desaturase (SCD), Peroxisome Proliferator-Activated Receptor Gamma (PPARgamma), Peroxisome Proliferator-Activated Receptor Alpha, (PPARalpha) and Sterol Regulatory Element Binding Protein (SREBP1) in Rasa Aragonesa light lambs in semitendinous muscle. Forty-four single-born male lambs were used to evaluate the effect of the feeding system, varying on an intensity gradient according to the use of concentrates: 1. grazing alfalfa, 2. grazing alfalfa with a supplement for lambs, 3. indoor lambs with grazing ewes and 4. drylot. RESULTS: Both grazing systems resulted in a higher concentration of vaccenic acid (VA), CLA, CLA/VA acid ratio, and a lower oleic content, oleic acid (C18:1)/stearic acid (C18:0) ratio, PUFA n-6/n-3 ratio and SCD expression compared to other diets. In addition feeding system affected the fatty acid composition and SCD expression, possibly due to CLA concentration or the PUFA n-6/n-3 ratio. Both expression of the SCD gene and the feeding system were important factors affecting CLA concentration in the animal's semitendinous muscle. PPARgamma, PPARalpha and SREBP1 expression seemed to be unaffected by the feeding system. Although no significant results were found, PPARgamma, PPARalpha and SREBP1 showed similar expression pattern as SCD. Moreover, the correlation results between SCD expression and PPARgamma (p < 0.01), as well as SREBP1 (p < 0.01) expression, may suggest that these genes were affecting SCD expression in a different way. CONCLUSIONS: The data indicated that the feeding system is the main factor affecting the fatty acid composition and SCD gene expression, which is also affected by CLA and possibly by n-6/n-3 PUFAs.


Asunto(s)
Dieta/veterinaria , Regulación de la Expresión Génica/fisiología , Músculo Esquelético/fisiología , Ovinos/fisiología , Animales , ADN/química , ADN/genética , Ácidos Grasos/análisis , Masculino , Músculo Esquelético/enzimología , PPAR alfa/análisis , PPAR alfa/genética , PPAR gamma/análisis , PPAR gamma/genética , Estearoil-CoA Desaturasa/análisis , Estearoil-CoA Desaturasa/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/análisis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...