Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hum Vaccin Immunother ; 20(1): 2343544, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38655676

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory illness in older adults. A major cause of COPD-related morbidity and mortality is acute exacerbation of COPD (AECOPD). Bacteria in the lungs play a role in exacerbation development, and the most common pathogen is non-typeable Haemophilus influenzae (NTHi). A vaccine to prevent AECOPD containing NTHi surface antigens was tested in a clinical trial. This study measured IgG and IgA against NTHi vaccine antigens in sputum. Sputum samples from 40 COPD patients vaccinated with the NTHi vaccine were collected at baseline and 30 days after the second dose. IgG and IgA antibodies against the target antigens and albumin were analyzed in the sputum. We compared antibody signals before and after vaccination, analyzed correlation with disease severity and between sputum and serum samples, and assessed transudation. Antigen-specific IgG were absent before vaccination and present with high titers after vaccination. Antigen-specific IgA before and after vaccination were low but significantly different for two antigens. IgG correlated between sputum and serum, and between sputum and disease severity. Sputum albumin was higher in patients with severe COPD than in those with moderate COPD, suggesting changes in transudation played a role. We demonstrated that immunization with the NTHi vaccine induces antigen-specific antibodies in sputum. The correlation between IgG from sputum and serum and the presence of albumin in the sputum of severe COPD patients suggested transudation of antibodies from the serum to the lungs, although local IgG production could not be excluded.Clinical Trial Registration: NCT02075541.


What is the context? Chronic obstructive pulmonary disease (COPD) is the most common chronic respiratory illness in older adults and the third leading cause of death worldwide.One bacterium in the lungs, non-typeable Haemophilus influenzae (NTHi), is responsible for acute exacerbation of the disease, characterized by an increase in airway wall inflammation and symptoms, leading to high morbidity and mortality.A vaccine targeting NTHi was previously developed but did not show efficacy in reducing exacerbations in COPD patients, probably because the vaccine did not elicit an immune response in the lung mucosae, where the bacteria are located.What is the impact? Parenteral immunization with new vaccines targeting NTHi is able to elicit immune defense at the level of lung mucosae.Now that antibodies can be measured in sputum, new vaccines against COPD exacerbations or other lung infections can be tested for efficacy in the actual target tissue.Also, lung immunity against specific pathogens can now be tested.What is new? We determined that antigen-specific antibodies were present in the lungs after vaccination; these were assessed in sputum after vaccination with NTHi surface antigens.NTHi-specific IgG were present in the lungs and appeared to have arrived there primarily by transudation, a type of leakage from the serum to the lung mucosae.Transudation appeared to be stronger in severe than in moderate COPD patients.


Asunto(s)
Anticuerpos Antibacterianos , Antígenos Bacterianos , Infecciones por Haemophilus , Vacunas contra Haemophilus , Haemophilus influenzae , Inmunidad Mucosa , Inmunoglobulina A , Inmunoglobulina G , Enfermedad Pulmonar Obstructiva Crónica , Esputo , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Infecciones por Haemophilus/inmunología , Infecciones por Haemophilus/prevención & control , Haemophilus influenzae/inmunología , Vacunas contra Haemophilus/inmunología , Vacunas contra Haemophilus/administración & dosificación , Inmunidad Mucosa/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina A/análisis , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Pulmón/inmunología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Esputo/inmunología , Esputo/microbiología
2.
Hum Vaccin Immunother ; 17(9): 3230-3238, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33847225

RESUMEN

Meningococcal serogroup B (MenB) accounts for an important proportion of invasive meningococcal disease (IMD). The 4-component vaccine against MenB (4CMenB) is composed of factor H binding protein (fHbp), neisserial heparin-binding antigen (NHBA), Neisseria adhesin A (NadA), and outer membrane vesicles of the New Zealand strain with Porin 1.4. A meningococcal antigen typing system (MATS) and a fully genomic approach, genetic MATS (gMATS), were developed to predict coverage of MenB strains by 4CMenB. We characterized 520 MenB invasive disease isolates collected over a 5-year period (January 2007-December 2011) from all Australian states/territories by multilocus sequence typing and estimated strain coverage by 4CMenB. The clonal complexes most frequently identified were ST-41/44 CC/Lineage 3 (39.4%) and ST-32 CC/ET-5 CC (23.7%). The overall MATS predicted coverage was 74.6% (95% coverage interval: 61.1%-85.6%). The overall gMATS prediction was 81.0% (lower-upper limit: 75.0-86.9%), showing 91.5% accuracy compared with MATS. Overall, 23.7% and 13.1% (MATS) and 26.0% and 14.0% (gMATS) of isolates were covered by at least 2 and 3 vaccine antigens, respectively, with fHbp and NHBA contributing the most to coverage. When stratified by year of isolate collection, state/territory and age group, MATS and gMATS strain coverage predictions were consistent across all strata. The high coverage predicted by MATS and gMATS indicates that 4CMenB vaccination may have an impact on the burden of MenB-caused IMD in Australia. gMATS can be used in the future to monitor variations in 4CMenB strain coverage over time and geographical areas even for non-culture confirmed IMD cases.


Asunto(s)
Infecciones Meningocócicas , Vacunas Meningococicas , Neisseria meningitidis Serogrupo B , Antígenos Bacterianos/genética , Australia/epidemiología , Humanos , Infecciones Meningocócicas/epidemiología , Infecciones Meningocócicas/prevención & control , Neisseria meningitidis Serogrupo B/genética , Serogrupo
3.
Nat Rev Microbiol ; 19(5): 287-302, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33542518

RESUMEN

The use of antibiotics has enabled the successful treatment of bacterial infections, saving the lives and improving the health of many patients worldwide. However, the emergence and spread of antimicrobial resistance (AMR) has been highlighted as a global threat by different health organizations, and pathogens resistant to antimicrobials cause substantial morbidity and death. As resistance to multiple drugs increases, novel and effective therapies as well as prevention strategies are needed. In this Review, we discuss evidence that vaccines can have a major role in fighting AMR. Vaccines are used prophylactically, decreasing the number of infectious disease cases, and thus antibiotic use and the emergence and spread of AMR. We also describe the current state of development of vaccines against resistant bacterial pathogens that cause a substantial disease burden both in high-income countries and in low- and medium-income countries, discuss possible obstacles that hinder progress in vaccine development and speculate on the impact of next-generation vaccines against bacterial infectious diseases on AMR.


Asunto(s)
Antibacterianos/farmacología , Infecciones Bacterianas/prevención & control , Vacunas Bacterianas/inmunología , Farmacorresistencia Bacteriana , Animales , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/inmunología , Humanos
4.
Cell ; 176(6): 1245-1247, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849370

RESUMEN

In this issue, Marcandalli et al. (2019) report a self-assembling nanoparticle bearing an antigen from respiratory syncytial virus. This is the first time the structure, stability, and adjuvanticity of an antigen have been rationally designed at the atomic level and incorporated in one vaccine.


Asunto(s)
Nanopartículas , Vacunas , Anticuerpos Neutralizantes , Antígenos , Virus Sincitiales Respiratorios
5.
Vaccine ; 37(29): 3754-3760, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-30448065

RESUMEN

Pyrogen content is one of the critical quality attributes impacting the safety of a product, and there is an increasing need for assays that can reliably measure this attribute in vaccines. The Limulus amebocyte lysate (LAL) assay and the rabbit pyrogen test (RPT) are the canonical animal-based pyrogen tests currently used to release vaccines; however, there are several drawbacks associated with these tests when applied to Bexsero, intrinsically pyrogenic product, containing a meningococcal Outer Membrane Vesicle component. While the RPT, as applied to Bexsero at its given dilution, ensures safe vaccine, it is highly variable and prone to false positive results. On the other hand, the LAL assay although quantitative, can detect only endotoxin pyrogens and is not sufficient for monitoring the safety of Bexsero, which contains both LPS and non-endotoxin pyrogens. Being aware of these limitations of the RPT and LAL when applied to Bexsero, the Monocyte Activation Test (MAT) which is sensitive to both endotoxin and non-endotoxin based pyrogens has been developed as an alternative pyrogen test. Here, the development and the validation of a MAT assay adapted from the European pharmacopoeia for Bexsero, is described. The MAT assay is then used for monitoring the safety and consistency of Bexsero vaccines at release, providing great advantages in terms of reduced variability with respect to RPT, reduction of animal use, in line with the 3Rs principle concerning the protection of animals and faster time to market. In addition the correlation of the MAT to the RPT has been demonstrated supporting the replacement of the in vivo method and the potential application of the assay to other intrinsically pyrogenic vaccines.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Endotoxinas/efectos adversos , Vacunas Meningococicas/efectos adversos , Monocitos/inmunología , Pirógenos/análisis , Endotoxinas/análisis , Humanos , Lipoproteínas/efectos adversos , Lipoproteínas/análisis , Meningitis Meningocócica/prevención & control , Vacunas Meningococicas/inmunología , Neisseria meningitidis/inmunología , Porinas/efectos adversos , Porinas/análisis , Pirógenos/efectos adversos
6.
PLoS One ; 11(10): e0162878, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27780200

RESUMEN

Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein ubiquitously expressed by Neisseria meningitidis strains and an antigen of the Bexsero® vaccine. NHBA binds heparin through a conserved Arg-rich region that is the target of two proteases, the meningococcal NalP and human lactoferrin (hLf). In this work, in vitro studies showed that recombinant NHBA protein was able to bind epithelial cells and mutations of the Arg-rich tract abrogated this binding. All N-terminal and C-terminal fragments generated by NalP or hLf cleavage, regardless of the presence or absence of the Arg-rich region, did not bind to cells, indicating that a correct positioning of the Arg-rich region within the full length protein is crucial. Moreover, binding was abolished when cells were treated with heparinase III, suggesting that this interaction is mediated by heparan sulfate proteoglycans (HSPGs). N. meningitidis nhba knockout strains showed a significant reduction in adhesion to epithelial cells with respect to isogenic wild-type strains and adhesion of the wild-type strain was inhibited by anti-NHBA antibodies in a dose-dependent manner. Overall, the results demonstrate that NHBA contributes to meningococcal adhesion to epithelial cells through binding to HSPGs and suggest a possible role of anti-Bexsero® antibodies in the prevention of colonization.


Asunto(s)
Anticuerpos Antibacterianos/genética , Anticuerpos Antibacterianos/metabolismo , Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Portadoras/metabolismo , Células Epiteliales/microbiología , Infecciones Meningocócicas/tratamiento farmacológico , Neisseria meningitidis/fisiología , Anticuerpos Antibacterianos/química , Sitios de Unión , Línea Celular , Técnicas de Inactivación de Genes , Proteoglicanos de Heparán Sulfato/metabolismo , Heparina/metabolismo , Humanos , Lactoferrina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Infecciones Meningocócicas/microbiología , Infecciones Meningocócicas/prevención & control , Mutación , Neisseria meningitidis/inmunología , Proteínas Recombinantes/metabolismo , Serina Endopeptidasas/metabolismo
7.
PLoS One ; 10(5): e0126325, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25951061

RESUMEN

Most bacterial small RNAs (sRNAs) are post-transcriptional regulators involved in adaptive responses, controlling gene expression by modulating translation or stability of their target mRNAs often in concert with the RNA chaperone Hfq. Neisseria meningitides, the leading cause of bacterial meningitis, is able to adapt to different host niches during human infection. However, only a few sRNAs and their functions have been fully described to date. Recently, transcriptional expression profiling of N. meningitides in human blood ex vivo revealed 91 differentially expressed putative sRNAs. Here we expanded this analysis by performing a global transcriptome study after exposure of N. meningitides to physiologically relevant stress signals (e.g. heat shock, oxidative stress, iron and carbon source limitation). and we identified putative sRNAs that were differentially expressed in vitro. A set of 98 putative sRNAs was obtained by analyzing transcriptome data and 8 new sRNAs were validated, both by Northern blot and by primer extension techniques. Deletion of selected sRNAs caused attenuation of N. meningitides infection in the in vivo infant rat model, leading to the identification of the first sRNAs influencing meningococcal bacteremia. Further analysis indicated that one of the sRNAs affecting bacteremia responded to carbon source availability through repression by a GntR-like transcriptional regulator. Both the sRNA and the GntR-like regulator are implicated in the control of gene expression from a common network involved in energy metabolism.


Asunto(s)
Bacteriemia/sangre , Neisseria meningitidis/aislamiento & purificación , ARN Bacteriano/genética , Transcriptoma , Animales , Northern Blotting , Ratas
8.
Infect Immun ; 82(10): 4144-53, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25047846

RESUMEN

The opportunistic pathogen Staphylococcus aureus is one of the major causes of health care-associated infections. S. aureus is primarily an extracellular pathogen, but it was recently reported to invade and replicate in several host cell types. The ability of S. aureus to persist within cells has been implicated in resistance to antimicrobials and recurrent infections. However, few staphylococcal proteins that mediate intracellular survival have been identified. Here we examine if EsxA and EsxB, substrates of the ESAT-6-like secretion system (Ess), are important during intracellular S. aureus infection. The Esx proteins are required for staphylococcal virulence, but their functions during infection are unclear. While isogenic S. aureus esxA and esxB mutants were not defective for epithelial cell invasion in vitro, a significant increase in early/late apoptosis was observed in esxA mutant-infected cells compared to wild-type-infected cells. Impeding secretion of EsxA by deleting C-terminal residues of the protein also resulted in a significant increase of epithelial cell apoptosis. Furthermore, cells transfected with esxA showed an increased protection from apoptotic cell death. A double mutant lacking both EsxA and EsxB also induced increased apoptosis but, remarkably, was unable to escape from cells as efficiently as the single mutants or the wild type. Thus, using in vitro models of intracellular staphylococcal infection, we demonstrate that EsxA interferes with host cell apoptotic pathways and, together with EsxB, mediates the release of S. aureus from the host cell.


Asunto(s)
Apoptosis , Proteínas Bacterianas/metabolismo , Células Epiteliales/microbiología , Células Epiteliales/fisiología , Interacciones Huésped-Patógeno , Staphylococcus aureus/patogenicidad , Factores de Virulencia/metabolismo , Proteínas Bacterianas/genética , Línea Celular , Eliminación de Gen , Humanos , Staphylococcus aureus/genética , Virulencia , Factores de Virulencia/genética
9.
Proc Natl Acad Sci U S A ; 111(1): 427-32, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24367091

RESUMEN

The complement system is a crucial component of the innate immune response against invading bacterial pathogens. The human pathogen Neisseria meningitidis (Nm) is known to possess several mechanisms to evade the complement system, including binding to complement inhibitors. In this study, we describe an additional mechanism used by Nm to evade the complement system and survive in human blood. Using an isogenic NalP deletion mutant and NalP complementing strains, we show that the autotransporter protease NalP cleaves C3, the central component of the complement cascade. The cleavage occurs 4 aa upstream from the natural C3 cleavage site and produces shorter C3a-like and longer C3b-like fragments. The C3b-like fragment is degraded in the presence of the complement regulators (factors H and I), and this degradation results in lower deposition of C3b on the bacterial surface. We conclude that NalP is an important factor to increase the survival of Nm in human serum.


Asunto(s)
Complemento C3/química , Complemento C3b/química , Proteínas de Transporte de Membrana/metabolismo , Neisseria meningitidis/metabolismo , Serina Endopeptidasas/metabolismo , Suero/microbiología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Complemento C3/inmunología , Complemento C3b/inmunología , Factor H de Complemento/química , Factor I de Complemento/química , ADN/genética , Escherichia coli/metabolismo , Eliminación de Gen , Humanos , Ratones , Datos de Secuencia Molecular , Fenotipo , Unión Proteica , Conejos , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Fracciones Subcelulares/metabolismo , Factores de Tiempo
10.
PLoS One ; 8(11): e81306, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24303041

RESUMEN

Clostridium difficile is a major cause of infectious diarrhea worldwide. Although the cell surface proteins are recognized to be important in clostridial pathogenesis, biological functions of only a few are known. Also, apart from the toxins, proteins exported by C. difficile into the extracellular milieu have been poorly studied. In order to identify novel extracellular factors of C. difficile, we analyzed bacterial culture supernatants prepared from clinical isolates, 630 and R20291, using liquid chromatography-tandem mass spectrometry. The majority of the proteins identified were non-canonical extracellular proteins. These could be largely classified into proteins associated to the cell wall (including CWPs and extracellular hydrolases), transporters and flagellar proteins. Seven unknown hypothetical proteins were also identified. One of these proteins, CD630_28300, shared sequence similarity with the anthrax lethal factor, a known zinc metallopeptidase. We demonstrated that CD630_28300 (named Zmp1) binds zinc and is able to cleave fibronectin and fibrinogen in vitro in a zinc-dependent manner. Using site-directed mutagenesis, we identified residues important in zinc binding and enzymatic activity. Furthermore, we demonstrated that Zmp1 destabilizes the fibronectin network produced by human fibroblasts. Thus, by analyzing the exoproteome of C. difficile, we identified a novel extracellular metalloprotease that may be important in key steps of clostridial pathogenesis.


Asunto(s)
Clostridioides difficile/metabolismo , Metaloproteasas/metabolismo , Proteómica , Zinc/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catálisis , Clostridioides difficile/genética , Activación Enzimática , Espacio Extracelular/metabolismo , Fibrinógeno/metabolismo , Fibroblastos , Fibronectinas/metabolismo , Humanos , Metaloproteasas/química , Metaloproteasas/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Transporte de Proteínas , Proteolisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
11.
Brief Funct Genomics ; 12(4): 328-40, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23723380

RESUMEN

Neisseria meningitidis is a strictly human pathogen and is one of the major causes of septicemia and meningitis worldwide. Functional genomics approaches have been extensively applied to study how N. meningitidis adapts to grow and survive in different human niches encountered during the infection. DNA microarrays performed in in vitro and ex vivo conditions have revealed changes in the transcriptome profiles of N. meningitidis upon interaction with human cells and after incubation in human serum and blood. Mutagenesis studies allowed detecting mutants in genes crucial for N. meningitidis colonization and systemic infection. The analysis of N. meningitidis genomes has been also successful in the identification of vaccine candidates used to develop an effective protein-based vaccine. The application of all these approaches revealed the potential to identify new virulence factors and vaccine candidates and to assign functions to previously uncharacterized genes providing new insights in the biology and pathogenesis of N. meningitidis.


Asunto(s)
Genómica/métodos , Neisseria meningitidis/genética , Neisseria meningitidis/patogenicidad , Humanos , Modelos Biológicos , Virulencia
12.
Lancet Infect Dis ; 13(5): 416-25, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23414709

RESUMEN

BACKGROUND: A novel multicomponent vaccine against meningococcal capsular group B (MenB) disease contains four major components: factor-H-binding protein, neisserial heparin binding antigen, neisserial adhesin A, and outer-membrane vesicles derived from the strain NZ98/254. Because the public health effect of the vaccine, 4CMenB (Novartis Vaccines and Diagnostics, Siena, Italy), is unclear, we assessed the predicted strain coverage in Europe. METHODS: We assessed invasive MenB strains isolated mainly in the most recent full epidemiological year in England and Wales, France, Germany, Italy, and Norway. Meningococcal antigen typing system (MATS) results were linked to multilocus sequence typing and antigen sequence data. To investigate whether generalisation of coverage applied to the rest of Europe, we also assessed isolates from the Czech Republic and Spain. FINDINGS: 1052 strains collected from July, 2007, to June, 2008, were assessed from England and Wales, France, Germany, Italy, and Norway. All MenB strains contained at least one gene encoding a major antigen in the vaccine. MATS predicted that 78% of all MenB strains would be killed by postvaccination sera (95% CI 63-90, range of point estimates 73-87% in individual country panels). Half of all strains and 64% of covered strains could be targeted by bactericidal antibodies against more than one vaccine antigen. Results for the 108 isolates from the Czech Republic and 300 from Spain were consistent with those for the other countries. INTERPRETATION: MATS analysis showed that a multicomponent vaccine could protect against a substantial proportion of invasive MenB strains isolated in Europe. Monitoring of antigen expression, however, will be needed in the future. FUNDING: Novartis Vaccines and Diagnostics.


Asunto(s)
Genes Bacterianos , Meningitis Meningocócica/prevención & control , Vacunas Meningococicas/uso terapéutico , Neisseria meningitidis Serogrupo B/aislamiento & purificación , Adhesinas Bacterianas/análisis , Antígenos Bacterianos/genética , Técnicas de Tipificación Bacteriana/métodos , ADN Bacteriano/análisis , Ensayo de Inmunoadsorción Enzimática , Europa (Continente)/epidemiología , Genotipo , Geografía , Humanos , Meningitis Meningocócica/epidemiología , Meningitis Meningocócica/microbiología , Tipificación de Secuencias Multilocus/métodos , Neisseria meningitidis Serogrupo B/clasificación , Neisseria meningitidis Serogrupo B/genética , Neisseria meningitidis Serogrupo B/patogenicidad , Vigilancia de la Población/métodos , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados
13.
J Bacteriol ; 195(3): 545-55, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23175653

RESUMEN

Bacteria within biofilms are protected from multiple stresses, including immune responses and antimicrobial agents. The biofilm-forming ability of bacterial pathogens has been associated with increased antibiotic resistance and chronic recurrent infections. Although biofilms have been well studied for several gut pathogens, little is known about biofilm formation by anaerobic gut species. The obligate anaerobe Clostridium difficile causes C. difficile infection (CDI), a major health care-associated problem primarily due to the high incidence of recurring infections. C. difficile colonizes the gut when the normal intestinal microflora is disrupted by antimicrobial agents; however, the factors or processes involved in gut colonization during infection remain unclear. We demonstrate that clinical C. difficile strains, i.e., strain 630 and the hypervirulent strain R20291, form structured biofilms in vitro, with R20291 accumulating substantially more biofilm. Microscopic and biochemical analyses show multiple layers of bacteria encased in a biofilm matrix containing proteins, DNA, and polysaccharide. Employing isogenic mutants, we show that virulence-associated proteins, Cwp84, flagella, and a putative quorum-sensing regulator, LuxS, are all required for maximal biofilm formation by C. difficile. Interestingly, a mutant in Spo0A, a transcription factor that controls spore formation, was defective for biofilm formation, indicating a possible link between sporulation and biofilm formation. Furthermore, we demonstrate that bacteria in clostridial biofilms are more resistant to high concentrations of vancomycin, a drug commonly used for treatment of CDI. Our data suggest that biofilm formation by C. difficile is a complex multifactorial process and may be a crucial mechanism for clostridial persistence in the host.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Clostridioides difficile/fisiología , Antibacterianos/farmacología , Adhesión Bacteriana , Biopelículas/efectos de los fármacos , Clostridioides difficile/clasificación , Clostridioides difficile/efectos de los fármacos , Flagelos , Proteínas de la Membrana/fisiología , Pruebas de Sensibilidad Microbiana , Percepción de Quorum , Esporas Bacterianas , Factores de Tiempo , Vancomicina/farmacología , Resistencia a la Vancomicina
14.
J Bacteriol ; 194(22): 6217-32, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22984255

RESUMEN

Neisseria meningitidis is the major cause of septicemia and meningococcal meningitis. During the course of infection, the bacterium must adapt to different host environments as a crucial factor for survival and dissemination; in particular, one of the crucial factors in N. meningitidis pathogenesis is the ability to grow and survive in human blood. We recently showed that N. meningitidis alters the expression of 30% of the open reading frames (ORFs) of the genome during incubation in human whole blood and suggested the presence of fine regulation at the gene expression level in order to control this step of pathogenesis. In this work, we used a customized tiling oligonucleotide microarray to define the changes in the whole transcriptional profile of N. meningitidis in a time course experiment of ex vivo bacteremia by incubating bacteria in human whole blood and then recovering RNA at different time points. The application of a newly developed bioinformatic tool to the tiling array data set allowed the identification of new transcripts--small intergenic RNAs, cis-encoded antisense RNAs, mRNAs with extended 5' and 3' untranslated regions (UTRs), and operons--differentially expressed in human blood. Here, we report a panel of expressed small RNAs, some of which can potentially regulate genes involved in bacterial metabolism, and we show, for the first time in N. meningitidis, extensive antisense transcription activity. This analysis suggests the presence of a circuit of regulatory RNA elements used by N. meningitidis to adapt to proliferate in human blood that is worthy of further investigation.


Asunto(s)
Sangre/microbiología , Regulación Bacteriana de la Expresión Génica/fisiología , Neisseria meningitidis/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Transcriptoma/fisiología , Secuencia de Bases , Humanos , Datos de Secuencia Molecular , Neisseria meningitidis/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
PLoS One ; 7(7): e40411, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22848376

RESUMEN

Streptococcus pyogenes is a major human pathogen worldwide, responsible for both local and systemic infections. These bacteria express the subtilisin-like protease SpyCEP which cleaves human IL-8 and related chemokines. We show that localization of SpyCEP is growth-phase and strain dependent. Significant shedding was observed only in a strain naturally overexpressing SpyCEP, and shedding was not dependent on SpyCEP autoproteolytic activity. Surface-bound SpyCEP in two different strains was capable of cleaving IL-8. To investigate SpyCEP action in vivo, we adapted the mouse air pouch model of infection for parallel quantification of bacterial growth, host immune cell recruitment and chemokine levels in situ. In response to infection, the predominant cells recruited were neutrophils, monocytes and eosinophils. Concomitantly, the chemokines KC, LIX, and MIP-2 in situ were drastically increased in mice infected with the SpyCEP knockout strain, and growth of this mutant strain was reduced compared to the wild type. SpyCEP has been described as a potential vaccine candidate against S. pyogenes, and we showed that surface-associated SpyCEP was recognized by specific antibodies. In vitro, such antibodies also counteracted the inhibitory effects of SpyCEP on chemokine mediated PMN recruitment. Thus, α-SpyCEP antibodies may benefit the host both directly by enabling opsonophagocytosis, and indirectly, by neutralizing an important virulence factor. The animal model we employed shows promise for broad application in the study of bacterial pathogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Péptido Hidrolasas/metabolismo , Proteolisis , Infecciones Estreptocócicas/enzimología , Streptococcus pyogenes/fisiología , Animales , Anticuerpos Antibacterianos/inmunología , Anticuerpos Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Quimiocinas/genética , Quimiocinas/inmunología , Quimiocinas/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Leucocitos/inmunología , Leucocitos/metabolismo , Ratones , Péptido Hidrolasas/genética , Péptido Hidrolasas/inmunología , Vacunas Estafilocócicas/genética , Vacunas Estafilocócicas/inmunología , Infecciones Estreptocócicas/genética , Infecciones Estreptocócicas/inmunología
16.
J Infect Dis ; 206(7): 1041-9, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22829645

RESUMEN

Iron availability plays an essential role in staphylococcal pathogenesis. We selected FhuD2, a lipoprotein involved in iron-hydroxamate uptake, as a novel vaccine candidate against Staphylococcus aureus. Unprecedented for staphylococcal lipoproteins, the protein was demonstrated to have a discrete, punctate localization on the bacterial surface. FhuD2 vaccination generated protective immunity against diverse clinical S. aureus isolates in murine infection models. Protection appeared to be associated with functional antibodies that were shown to mediate opsonophagocytosis, to be effective in passive transfer experiments, and to potentially block FhuD2-mediated siderophore uptake. Furthermore, the protein was found to be up-regulated in infected tissues and was required for staphylococcal dissemination and abscess formation. Herein we show that the staphylococcal iron-hydroxamate uptake system is important in invasive infection and functions as an efficacious vaccine target.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Infecciones Estafilocócicas/prevención & control , Staphylococcus aureus/metabolismo , Vacunación , Absceso/inmunología , Absceso/prevención & control , Secuencia de Aminoácidos , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Compuestos Férricos/metabolismo , Regulación Bacteriana de la Expresión Génica , Técnicas de Inactivación de Genes , Células HL-60 , Humanos , Ácidos Hidroxámicos/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/inmunología , Ratones , Datos de Secuencia Molecular , Transporte de Proteínas , Conejos , Sepsis/inmunología , Sepsis/prevención & control , Infecciones Estafilocócicas/inmunología , Vacunas Estafilocócicas/administración & dosificación , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/inmunología
17.
Vaccine ; 30 Suppl 2: B78-86, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22607903

RESUMEN

Despite the widespread implementation of several effective vaccines over the past few decades, bacterial meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis and Group B Streptococcus (GBS) still results in unacceptably high levels of human mortality and morbidity. A residual disease burden due to bacterial meningitis is also apparent due to a number of persistent or emerging pathogens, including Mycobacterium tuberculosis, Escherichia coli, Staphylococcus aureus, Salmonella spp. and Streptococcus suis. Here, we review the current status of bacterial meningitis caused by these pathogens, highlighting how past and present vaccination programs have attempted to counter these pathogens. We discuss how improved pathogen surveillance, implementation of current vaccines, and development of novel vaccines may be expected to further reduce bacterial meningitis and related diseases in the future.


Asunto(s)
Infecciones por Bacterias Gramnegativas/epidemiología , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Grampositivas/epidemiología , Infecciones por Bacterias Grampositivas/prevención & control , Meningitis Bacterianas/epidemiología , Meningitis Bacterianas/prevención & control , Investigación Biomédica/tendencias , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/mortalidad , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/mortalidad , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Programas de Inmunización/historia , Programas de Inmunización/tendencias , Meningitis Bacterianas/microbiología , Meningitis Bacterianas/mortalidad
18.
Vaccine ; 30 Suppl 2: B87-97, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22607904

RESUMEN

Neisseria meningitidis is a major cause of endemic cases and epidemics of meningitis and devastating septicemia. Although effective vaccines exist for several serogroups of pathogenic N. meningitidis, conventional vaccinology approaches have failed to provide a universal solution for serogroup B (MenB) which consequently remains an important burden of disease worldwide. The advent of whole-genome sequencing changed the approach to vaccine development, enabling the identification of potential vaccine candidates starting directly with the genomic information, with a process named reverse vaccinology. The application of reverse vaccinology to MenB allowed the identification of new protein antigens able to induce bactericidal antibodies. Three highly immunogenic antigens (fHbp, NadA and NHBA) were combined with outer membrane vesicles and formulated for human use in a multicomponent vaccine, named 4CMenB. This is the first MenB vaccine based on recombinant proteins able to elicit a robust bactericidal immune response in adults, adolescents and infants against a broad range of serogroup B isolates. This review describes the successful story of the development of the 4CMenB vaccine, with particular emphasis on the functional, immunological and structural characterization of the protein antigens included in the vaccine.


Asunto(s)
Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Vacunas Meningococicas/inmunología , Neisseria meningitidis Serogrupo B/genética , Neisseria meningitidis Serogrupo B/inmunología , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/inmunología , Adhesinas Bacterianas/metabolismo , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Humanos , Vacunas Meningococicas/genética , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
19.
Curr Opin Immunol ; 24(3): 337-42, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22541723

RESUMEN

Vaccines are currently available for many infectious diseases caused by several microbes and the prevention of disease and death by vaccination has profoundly improved public health globally. However, vaccines are not yet licensed for use against many other infectious diseases and new or improved vaccines are needed to replace suboptimal vaccines, and against newly emerging pathogens. Most of the vaccines currently licensed for human use include live attenuated and inactivated or killed microorganisms. Only a small subset is based on purified components and even fewer are recombinantly produced. Novel approaches in recombinant DNA technology, genomics and structural biology have revolutionized the way vaccine candidates are developed and will make a significant impact in the generation of safer and more effective vaccines.


Asunto(s)
Vacunas Bacterianas/inmunología , Animales , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/prevención & control , Humanos , Subunidades de Proteína/inmunología , Vacunas Sintéticas/inmunología
20.
J Biol Chem ; 286(48): 41767-41775, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21965688

RESUMEN

Neisseria heparin binding antigen (NHBA), also known as GNA2132 (genome-derived Neisseria antigen 2132), is a surface-exposed lipoprotein from Neisseria meningitidis that was originally identified by reverse vaccinology. It is one the three main antigens of a multicomponent vaccine against serogroup B meningitis (4CMenB), which has just completed phase III clinical trials in infants. In contrast to the other two main vaccine components, little is known about the origin of the immunogenicity of this antigen, and about its ability to induce a strong cross-bactericidal response in animals and humans. To characterize NHBA in terms of its structural/immunogenic properties, we have analyzed its sequence and identified a C-terminal region that is highly conserved in all strains. We demonstrate experimentally that this region is independently folded, and solved its three-dimensional structure by nuclear magnetic resonance. Notably, we need detergents to observe a single species in solution. The NHBA domain fold consists of an 8-strand ß-barrel that closely resembles the C-terminal domains of N. meningitidis factor H-binding protein and transferrin-binding protein B. This common fold together with more subtle structural similarities suggest a common ancestor for these important antigens and a role of the ß-barrel fold in inducing immunogenicity against N. meningitidis. Our data represent the first step toward understanding the relationship between structural, functional, and immunological properties of this important vaccine component.


Asunto(s)
Antígenos Bacterianos/química , Vacunas Meningococicas/química , Neisseria meningitidis Serogrupo B/química , Pliegue de Proteína , Antígenos Bacterianos/inmunología , Ensayos Clínicos Fase III como Asunto , Humanos , Vacunas Meningococicas/inmunología , Neisseria meningitidis Serogrupo B/inmunología , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...