Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2405230, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096068

RESUMEN

Molecular dynamics (MD) simulations at a constant electric potential are an essential tool to study electrochemical processes, providing microscopic information on the structural, thermodynamic, and dynamical properties. Despite the numerous advances in the simulation of electrodes, they fail to accurately represent the electronic structure of materials such as graphite. In this work, a simple parameterization method that allows to tune the metallicity of the electrode based on a quantum chemistry calculation of the density of states (DOS) is introduced. As a first illustration, the interface between graphite electrodes and two different liquid electrolytes, an aqueous solution of NaCl and a pure ionic liquid, at different applied potentials are studied. It is shown that the simulations reproduce qualitatively the experimentally-measured capacitance; in particular, they yield a minimum of capacitance at the point of zero charge (PZC), which is due to the quantum capacitance (QC) contribution. An analysis of the structure of the adsorbed liquids allows to understand why the ionic liquid displays a lower capacitance despite its large ionic concentration. In addition to its relevance for the important class of carbonaceous electrodes, this method can be applied to any electrode materials (e.g. 2D materials, conducting polymers, etc), thus enabling molecular simulation studies of complex electrochemical devices in the future.

2.
Faraday Discuss ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39005111

RESUMEN

Water-in-salt (WiS) electrolytes are promising systems for a variety of energy storage devices. Indeed, they represent a great alternative to conventional organic electrolytes thanks to their environmental friendliness, non-flammability, and good electrochemical stability. Understanding the behaviour of such systems and their local organisation is a key direction for their rational design and successful implementation at the industrial scale. In the present paper, we focus our investigation on the 21 m bis(trifluoromethanesulfonyl)imide (LiTFSI) WiS electrolyte, recently reported to have acidic pH values. We explore the speciation of an excess proton in this system and its dependence on the initial local environment using ab initio molecular dynamics simulations. In particular, we observe the formation of HTFSI acid in the WiS system, known to act as a superacid in water. This acid is stabilised in the WiS solution for several picoseconds thanks to the formation of a complex with water molecules and a neighboring TFSI- anion. We further investigate how the excess proton affects the microstructure of WiS, in particular, the recently observed oligomerisation of lithium cations, and we report possible notable perturbations of the lithium nanochain organisation. These two phenomena are particularly important when considering WiS as electrolytes in batteries and supercapacitors, and our results contribute to the comprehension of these systems at the molecular level.

3.
J Am Chem Soc ; 146(25): 17495-17507, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38863085

RESUMEN

Optimizing electrosynthetic reactions requires fine tuning of a vast chemical space, including charge transfer at electrocatalyst/electrode surfaces, engineering of mass transport limitations, and complex interactions of reactants and products with their environment. Hybrid electrolytes, in which supporting salt ions and substrates are dissolved in a binary mixture of organic solvent and water, represent a new piece of this complex puzzle as they offer a unique opportunity to harness water as the oxygen or proton source in electrosynthesis. In this work, we demonstrate that modulating water-organic solvent interactions drastically impacts the solvation properties of hybrid electrolytes. Combining various spectroscopies with synchrotron small-angle X-ray scattering (SAXS) and force field-based molecular dynamics (MD) simulations, we show that the size and composition of aqueous domains forming in hybrid electrolytes can be controlled. We demonstrate that water is more reactive for the hydrogen evolution reaction (HER) in aqueous domains than when strongly interacting with solvent molecules, which originates from a change in reaction kinetics rather than a thermodynamic effect. We exemplify novel opportunities arising from this new knowledge for optimizing electrosynthetic reactions in hybrid electrolytes. For reactions proceeding first via the activation of water, fine tuning of aqueous domains impacts the kinetics and potentially the selectivity of the reaction. Instead, for organic substrates reacting prior to water, aqueous domains have no impact on the reaction kinetics, while selectivity may be affected. We believe that such a fine comprehension of solvation properties of hybrid electrolytes can be transposed to numerous electrosynthetic reactions.

4.
J Chem Phys ; 160(9)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38426524

RESUMEN

Current models to understand the reactivity of metal/aqueous interfaces in electrochemistry, e.g., volcano plots, are based on the adsorption free energies of reactants and products, which are often small hydrophobic molecules (such as in CO2 and N2 reduction). Calculations played a major role in the quantification and comprehension of these free energies in terms of the interactions that the reactive species form with the surface. However, solvation free energies also come into play in two ways: (i) by modulating the adsorption free energy together with solute-surface interactions, as the solute has to penetrate the water adlayer in contact with the surface and get partially desolvated (which costs free energy); (ii) by regulating transport across the interface, i.e., the free energy profile from the bulk to the interface, which is strongly non-monotonic due to the unique nature of metal/aqueous interfaces. Here, we use constant potential molecular dynamics to study the solvation contributions, and we uncover huge effects of the shape and orientation (on top of the already known size effect) of small hydrophobic and amphiphilic solutes on their adsorption free energy. We propose a minimal theoretical model, the S.O.S. model, that accounts for size, orientation, and shape effects. These novel aspects are rationalized by recasting the concepts at the base of the Lum-Chandler-Weeks theory of hydrophobic solvation (for small solutes in the so-called volume-dominated regime) into a layer-by-layer form, where the properties of each interfacial region close to the metal are explicitly taken into account.

5.
J Am Chem Soc ; 146(12): 8142-8148, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38486506

RESUMEN

Water-in-salts (WiSs) have recently emerged as promising electrolytes for energy storage applications ranging from aqueous batteries to supercapacitors. Here, ab initio molecular dynamics is used to study the structure of a 21 m LiTFSI WiS. The simulation reveals a new feature, in which the lithium ions form polymer-like nanochains that involve up to 10 ions. Despite the strong Coulombic interaction between them, the ions in the chains are found at a distance of 2.5 Å. They show a drastically different solvation shell compared to that of the isolated ions, in which they share on average two water molecules. The nanochains have a highly transient character due to the low free energy barrier for forming/breaking them. Providing new insights into the nanostructure of WiS electrolytes, our work calls for reevaluating our current knowledge of highly concentrated electrolytes and the impact of the modification of the solvation of active species on their electrochemical performances.

6.
ACS Nano ; 18(1): 1181-1194, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38117206

RESUMEN

When a surface is immersed in a solution, it usually acquires a charge, which attracts counterions and repels co-ions to form an electrical double layer. The ions directly adsorbed to the surface are referred to as the Stern layer. The structure of the Stern layer normal to the interface was described decades ago, but the lateral organization within the Stern layer has received scant attention. This is because instrumental limitations have prevented visualization of the ion arrangements except for atypical, model, crystalline surfaces. Here, we use high-resolution amplitude modulated atomic force microscopy (AFM) to visualize in situ the lateral structure of Stern layer ions adsorbed to polycrystalline gold, and amorphous silica and gallium nitride (GaN). For all three substrates, when the density of ions in the layer exceeds a system-dependent threshold, correlation effects induce the formation of close packed structures akin to Wigner crystals. Depending on the surface and the ions, the Wigner crystal-like structure can be hexagonally close packed, cubic, or worm-like. The influence of the electrolyte concentration, species, and valence, as well as the surface type and charge, on the Stern layer structures is described. When the system parameters are changed to reduce the Stern layer ion surface excess below the threshold value, Wigner crystal-like structures do not form and the Stern layer is unstructured. For gold surfaces, molecular dynamics (MD) simulations reveal that when sufficient potential is applied to the surface, ion clusters form with dimensions similar to the Wigner crystal-like structures in the AFM images. The lateral Stern layer structures presented, and in particular the Wigner crystal-like structures, will influence diverse applications in chemistry, energy storage, environmental science, nanotechnology, biology, and medicine.

7.
J Phys Chem Lett ; 14(1): 101-106, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36573965

RESUMEN

Ionic liquids generally display peculiar structural features that impact their physical properties, such as the formation of polar and apolar domains. Recently, ionic liquids functionalized with anthraquinone and TEMPO redox groups were shown to increase the energy storage performance of supercapacitors, but their structure has not yet been characterized. In this work, we use polarizable molecular dynamics to study the nanostructuration of such biredox ionic liquids. We show that TEMPO nitroxyl functions tend to aggregate, while the anthraquinone groups favor stacked arrangements. The latter eventually percolate through the whole liquid, which sheds some light on the mechanisms at play within biredox ionic liquid-based supercapacitors.

8.
J Am Chem Soc ; 144(49): 22734-22746, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36468903

RESUMEN

The electrocatalytic epoxidation of alkenes at heterogeneous catalysts using water as the sole oxygen source is a promising safe route toward the sustainable synthesis of epoxides, which are essential building blocks in organic chemistry. However, the physicochemical parameters governing the oxygen-atom transfer to the alkene and the impact of the electrolyte structure on the epoxidation reaction are yet to be understood. Here, we study the electrocatalytic epoxidation of cyclooctene at the surface of gold in hybrid organic/aqueous mixtures using acetonitrile (ACN) solvent. Gold was selected, as in ACN/water electrolytes gold oxide is formed by reactivity with water at potentials less anodic than the oxygen evolution reaction (OER). This unique property allows us to demonstrate that a sacrificial mechanism is responsible for cyclooctene epoxidation at metallic gold surfaces, proceeding through cyclooctene activation, while epoxidation at gold oxide shares similar reaction intermediates with the OER and proceeds via the activation of water. More importantly, we show that the hydrophilicity of the electrode/electrolyte interface can be tuned by changing the nature of the supporting salt cation, hence affecting the reaction selectivity. At low overpotential, hydrophilic interfaces formed using strong Lewis acid cations are found to favor gold passivation. Instead, hydrophobic interfaces created by the use of large organic cations favor the oxidation of cyclooctene and the formation of epoxide. Our study directly demonstrates how tuning the hydrophilicity of electrochemical interfaces can improve both the yield and selectivity of anodic reactions at the surface of heterogeneous catalysts.


Asunto(s)
Alquenos , Oxígeno , Alquenos/química , Ciclooctanos , Compuestos Epoxi/química , Oro , Interacciones Hidrofóbicas e Hidrofílicas , Oxígeno/química , Agua/química
9.
J Chem Phys ; 157(18): 184801, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36379806

RESUMEN

Electrochemistry is central to many applications, ranging from biology to energy science. Studies now involve a wide range of techniques, both experimental and theoretical. Modeling and simulations methods, such as density functional theory or molecular dynamics, provide key information on the structural and dynamic properties of the systems. Of particular importance are polarization effects of the electrode/electrolyte interface, which are difficult to simulate accurately. Here, we show how these electrostatic interactions are taken into account in the framework of the Ewald summation method. We discuss, in particular, the formal setup for calculations that enforce periodic boundary conditions in two directions, a geometry that more closely reflects the characteristics of typical electrolyte/electrode systems and presents some differences with respect to the more common case of periodic boundary conditions in three dimensions. These formal developments are implemented and tested in MetalWalls, a molecular dynamics software that captures the polarization of the electrolyte and allows the simulation of electrodes maintained at a constant potential. We also discuss the technical aspects involved in the calculation of two sets of coupled degrees of freedom, namely the induced dipoles and the electrode charges. We validate the implementation, first on simple systems, then on the well-known interface between graphite electrodes and a room-temperature ionic liquid. We finally illustrate the capabilities of MetalWalls by studying the adsorption of a complex functionalized electrolyte on a graphite electrode.

10.
J Chem Phys ; 157(9): 094103, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36075704

RESUMEN

Quinones are redox active organic molecules that have been proposed as an alternative choice to metal-based materials in electrochemical energy storage devices. Functionalization allows one to fine tune not only their chemical stability but also the redox potential and kinetics of the electron transfer reaction. However, the reaction rate constant is not only determined by the redox species but also impacted by solvent effects. In this work, we show how the functionalization of benzoquinone with different functional groups impacts the solvent reorganization free energies of electron transfer half-reactions in acetonitrile. The use of molecular density functional theory, whose computational cost for studying the electron transfer reaction is considerably reduced compared to the state-of-the-art molecular dynamics simulations, enables us to perform a systematic study. We validate the method by comparing the predictions of the solvation shell structure and the free energy profiles for electron transfer reaction to the reference classical molecular dynamics simulations in the case of anthraquinone solvated in acetonitrile. We show that all the studied electron transfer half-reactions follow the Marcus theory, regardless of functional groups. Consequently, the solvent reorganization free energy decreases as the molecular size increases.

11.
ACS Appl Mater Interfaces ; 14(18): 20835-20847, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35481776

RESUMEN

Li-ion batteries are the electrochemical energy storage technology of choice of today's electrical vehicles and grid applications with a growing interest for Na-ion and K-ion systems based on either aqueous or non-aqueous electrolyte for power, cost, and sustainable reasons. The rate capability of alkali-metal-ion batteries is influenced by ion transport properties in the bulk of the electrolyte, as well as by diverse effects occurring at the vicinity of the electrode and electrolyte interface. Therefore, identification of the predominant factor affecting the rate capability of electrodes still remains a challenge and requires suitable experimental and computational methods. Herein, we investigate the mechanistic of the K+ insertion process in the Prussian blue phase, Fe4III[FeII(CN)6]3 in both aqueous and non-aqueous electrolytes, which reveals drastic differences. Through combined electrochemical characterizations, electrochemical-quartz-crystal-microbalance and ac-electrogravimetric analyses, we provide evidences that what matters the most for fast ion transport is the positioning of the partially solvated cations adsorbed at the material surface in aqueous as opposed to non-aqueous electrolytes. We rationalized such findings by molecular dynamics simulations that establish the K+ repartition profile within the electrochemical double layer. A similar trend was earlier reported by our group for the aqueous versus non-aqueous insertion of Li+ into LiFePO4. Such a study unveils the critical but overlooked role of the electrode-electrolyte interface in ruling ion transport and insertion processes. Tailoring this interface structuring via the proper salt-solvent interaction is the key to enabling the best power performances in alkali-metal-ion batteries.

12.
Angew Chem Int Ed Engl ; 61(5): e202112679, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34796598

RESUMEN

The electrical double-layer plays a key role in important interfacial electrochemical processes from catalysis to energy storage and corrosion. Therefore, understanding its structure is crucial for the progress of sustainable technologies. We extract new physico-chemical information on the capacitance and structure of the electrical double-layer of platinum and gold nanoparticles at the molecular level, employing single nanoparticle electrochemistry. The charge storage ability of the solid/liquid interface is larger by one order-of-magnitude than predicted by the traditional mean-field models of the double-layer such as the Gouy-Chapman-Stern model. Performing molecular dynamics simulations, we investigate the possible relationship between the measured high capacitance and adsorption strength of the water adlayer formed at the metal surface. These insights may launch the active tuning of solid-solvent and solvent-solvent interactions as an innovative design strategy to transform energy technologies towards superior performance and sustainability.

13.
J Chem Phys ; 155(20): 204706, 2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34852496

RESUMEN

Metal/water interfaces catalyze a large variety of chemical reactions, which often involve small hydrophobic molecules. In the present theoretical study, we show that hydrophobic hydration at the Au(100)/water interface actively contributes to the reaction free energy by up to several hundreds of meV. This occurs either in adsorption/desorption reaction steps, where the vertical distance from the surface changes in going from reactants to products, or in addition and elimination reaction steps, where two small reactants merge into a larger product and vice versa. We find that size and position effects cannot be captured by treating them as independent variables. Instead, their simultaneous evaluation allows us to map the important contributions, and we provide examples of their combinations for which interfacial reactions can be either favored or disfavored. By taking a N2 and a CO2 reduction pathway as test cases, we show that explicitly considering hydrophobic effects is important for the selectivity and rate of these relevant interfacial processes.

14.
J Chem Phys ; 155(7): 074504, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34418918

RESUMEN

Redox-active molecules are of interest in many fields, such as medicine, catalysis, or energy storage. In particular, in supercapacitor applications, they can be grafted to ionic liquids to form so-called biredox ionic liquids. To completely understand the structural and transport properties of such systems, an insight at the molecular scale is often required, but few force fields are developed ad hoc for these molecules. Moreover, they do not include polarization effects, which can lead to inaccurate solvation and dynamical properties. In this work, we developed polarizable force fields for redox-active species anthraquinone (AQ) and 2,2,6,6-tetra-methylpiperidinyl-1-oxyl (TEMPO) in their oxidized and reduced states as well as for acetonitrile. We validate the structural properties of AQ, AQ•-, AQ2-, TEMPO•, and TEMPO+ in acetonitrile against density functional theory-based molecular dynamics simulations and we study the solvation of these redox molecules in acetonitrile. This work is a first step toward the characterization of the role played by AQ and TEMPO in electrochemical and catalytic devices.

15.
J Chem Phys ; 155(4): 044703, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34340400

RESUMEN

Electrochemistry experiments have established that the capacitance of electrode-electrolyte interfaces is much larger for good metals, such as gold and platinum, than for carbon-based materials. Despite the development of elaborate electrode interaction potentials, to date molecular dynamics simulations are not able to capture this effect. Here, we show that changing the width of the Gaussian charge distribution used to represent the atomic charges in gold is an effective way to tune its metallicity. Larger Gaussian widths lead to a capacitance of aqueous solutions (pure water and 1 M NaCl) in good agreement with recent ab initio molecular dynamics results. For pure water, the increase in the capacitance is not accompanied by structural changes, while in the presence of salt, the Na+ cations tend to adsorb significantly on the surface. For a strongly metallic gold electrode, these ions can even form inner sphere complexes on hollow sites of the surface.

16.
J Phys Chem Lett ; 12(15): 3827-3836, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33852317

RESUMEN

Hydrophobicity/hydrophilicity of aqueous interfaces at the molecular level results from a subtle balance in the water-water and water-surface interactions. This is characterized here via density functional theory-molecular dynamics (DFT-MD) coupled with vibrational sum frequency generation (SFG) and THz-IR absorption spectroscopies. We show that water at the interface with a series of weakly interacting materials is organized into a two-dimensional hydrogen-bonded network (2D-HB-network), which is also found above some macroscopically hydrophilic silica and alumina surfaces. These results are rationalized through a descriptor that measures the number of "vertical" and "horizontal" hydrogen bonds formed by interfacial water, quantifying the competition between water-surface and water-water interactions. The 2D-HB-network is directly revealed by THz-IR absorption spectroscopy, while the competition of water-water and water-surface interactions is quantified from SFG markers. The combination of SFG and THz-IR spectroscopies is thus found to be a compelling tool to characterize the finest details of molecular hydrophobicity at aqueous interfaces.

17.
Proc Natl Acad Sci U S A ; 118(15)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33876767

RESUMEN

Hydrophobic hydration at metal/water interfaces actively contributes to the energetics of electrochemical reactions, e.g. [Formula: see text] and [Formula: see text] reduction, where small hydrophobic molecules are involved. In this work, constant applied potential molecular dynamics is employed to study hydrophobic hydration at a gold/water interface. We propose an adaptation of the Lum-Chandler-Weeks (LCW) theory to describe the free energy of hydrophobic hydration at the interface as a function of solute size and applied voltage. Based on this model we are able to predict the free energy cost of cavity formation at the interface directly from the free energy cost in the bulk plus an interface-dependent correction term. The interfacial water network contributes significantly to the free energy, yielding a preference for outer-sphere adsorption at the gold surface for ideal hydrophobes. We predict an accumulation of small hydrophobic solutes of sizes comparable to CO or [Formula: see text], while the free energy cost to hydrate larger hydrophobes, above 2.5-Å radius, is shown to be greater at the interface than in the bulk. Interestingly, the transition from the volume dominated to the surface dominated regimes predicted by the LCW theory in the bulk is also found to take place for hydrophobes at the Au/water interface but occurs at smaller cavity radii. By applying the adapted LCW theory to a simple model addition reaction, we illustrate some implications of our findings for electrochemical reactions.

18.
Acc Chem Res ; 54(4): 1034-1042, 2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33530686

RESUMEN

ConspectusThe recent discovery of "water-in-salt" electrolytes has spurred a rebirth of research on aqueous batteries. Most of the attention has been focused on the formulation of salts enabling the electrochemical window to be expanded as much as possible, well beyond the 1.23 V allowed by thermodynamics in water. This approach has led to critical successes, with devices operating at voltages of up to 4 V. These efforts were accompanied by fundamental studies aiming at understanding water speciation and its link with the bulk and interfacial properties of water-in-salt electrolytes. This speciation was found to differ markedly from that in conventional aqueous solutions since most water molecules are involved in the solvation of the cationic species (in general Li+) and thus cannot form their usual hydrogen-bonding network. Instead, it is the anions that tend to self-aggregate in nanodomains and dictate the interfacial and transport properties of the electrolyte. This particular speciation drastically alters the presence and reactivity of the water molecules at electrified interfaces, which enlarges the electrochemical windows of these aqueous electrolytes.Thanks to this fundamental understanding, a second very active lead was recently followed, which consists of using a scarce amount of water in nonaqueous electrolytes in order to control the interfacial properties. Following this path, it was proposed to use an organic solvent such as acetonitrile as a confinement matrix for water. Tuning the salt/water ratio in such systems leads to a whole family of systems that can be used to determine the reactivity of water and control the potential at which the hydrogen evolution reaction occurs. Put together, all of these efforts allow a shift of our view of the water molecule from a passive solvent to a reactant involved in many distinct fields ranging from electrochemical energy storage to (electro)catalysis.Combining spectroscopic and electrochemical techniques with molecular dynamics simulations, we have observed very interesting chemical phenomena such as immiscibility between two aqueous phases, specific adsorption properties of water molecules that strongly affect their reactivity, and complex diffusive mechanisms due to the formation of anionic and aqueous nanodomains.

19.
J Chem Phys ; 153(21): 214505, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33291914

RESUMEN

Soda-lime-silica is a glassy system of strong industrial interest. In order to characterize its liquid state properties, we performed molecular dynamics simulations employing an aspherical ion model that includes atomic polarization and deformation effects. They allowed us to study the structure and diffusion properties of the system at temperatures ranging from 1400 K to 3000 K. We show that Na+ and Ca2+ ions adopt a different structural organization within the silica network, with Ca2+ ions having a greater affinity for non-bridging oxygens than Na+. We further link this structural behavior to their different diffusivities, suggesting that escaping from the first oxygen coordination shell is the limiting step for the diffusion. Na+ diffuses faster than Ca2+ because it is bonded to a smaller number of non-bridging oxygens. The formed ionic bonds are also less strong in the case of Na+.

20.
Phys Chem Chem Phys ; 22(19): 10561-10568, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32073058

RESUMEN

Biredox ionic liquids are a new class of functionalized electrolytes that may play an important role in future capacitive energy storage devices. By allowing additional storage of electrons inside the liquids, they can improve device performance significantly. However current devices employ nanoporous carbons in which the diffusion of the liquid and the adsorption of the ions could be affected by the occurrence of electron-transfer reactions. It is therefore necessary to understand better the thermodynamics and the kinetics of such reactions in biredox ionic liquids. Here we perform ab initio molecular dynamics simulations of both the oxidized and reduced species of several redox-active ionic molecules (used in biredox ionic liquids) dissolved in acetonitrile solvent and compare them with the bare redox molecules. We show that in all the cases, it is necessary to introduce a two Gaussian state model to calculate the reaction free energies accurately. These reaction free energies are only slightly affected by the presence of the IL group on the molecule. We characterize the structure of the solvation shell around the redox active part of the molecules and show that in the case of TEMPO-based molecules strong reorientation effects occur during the oxidation reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...