Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 14(5)2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38366837

RESUMEN

A simple, broadly applicable method was developed using an in vitro transposition reaction followed by transformation into Escherichia coli and screening plates for fluorescent colonies. The transposition reaction catalyzes the random insertion of a fluorescent protein open reading frame into a target gene on a plasmid. The transposition reaction is employed directly in an E. coli transformation with no further procedures. Plating at high colony density yields fluorescent colonies. Plasmids purified from fluorescent colonies contain random, in-frame fusion proteins into the target gene. The plate screen also results in expressed, stable proteins. A large library of chimeric proteins was produced, which was useful for downstream research. The effect of using different fluorescent proteins was investigated as well as the dependence of the linker sequence between the target and fluorescent protein open reading frames. The utility and simplicity of the method were demonstrated by the fact that it has been employed in an undergraduate biology laboratory class without failure over dozens of class sections. This suggests that the method will be useful in high-impact research at small liberal arts colleges with limited resources. However, in-frame fusion proteins were obtained from 8 different targets suggesting that the method is broadly applicable in any research setting.


Asunto(s)
Escherichia coli , Mutagénesis Insercional , Proteínas Recombinantes de Fusión , Escherichia coli/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Plásmidos/genética , Sistemas de Lectura Abierta , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo
2.
Cells ; 11(1)2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-35011608

RESUMEN

Mitotic exit is a critical cell cycle transition that requires the careful coordination of nuclear positioning and cyclin B destruction in budding yeast for the maintenance of genome integrity. The mitotic exit network (MEN) is a Ras-like signal transduction pathway that promotes this process during anaphase. A crucial step in MEN activation occurs when the Dbf2-Mob1 protein kinase complex associates with the Nud1 scaffold protein at the yeast spindle pole bodies (SPBs; centrosome equivalents) and thereby becomes activated. This requires prior priming phosphorylation of Nud1 by Cdc15 at SPBs. Cdc15 activation, in turn, requires both the Tem1 GTPase and the Polo kinase Cdc5, but how Cdc15 associates with SPBs is not well understood. We have identified a hyperactive allele of NUD1, nud1-A308T, that recruits Cdc15 to SPBs in all stages of the cell cycle in a CDC5-independent manner. This allele leads to early recruitment of Dbf2-Mob1 during metaphase and requires known Cdc15 phospho-sites on Nud1. The presence of nud1-A308T leads to loss of coupling between nuclear position and mitotic exit in cells with mispositioned spindles. Our findings highlight the importance of scaffold regulation in signaling pathways to prevent improper activation.


Asunto(s)
Puntos de Control del Ciclo Celular , Mitosis , Saccharomycetales , Proteínas de Schizosaccharomyces pombe , Alelos , Anafase , Genes Dominantes , Metafase , Mutación/genética , Saccharomycetales/citología , Saccharomycetales/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático/metabolismo , Cuerpos Polares del Huso/metabolismo
3.
G3 (Bethesda) ; 8(11): 3397-3410, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30166350

RESUMEN

The proper regulation of cell cycle transitions is paramount to the maintenance of cellular genome integrity. In Saccharomyces cerevisiae, the mitotic exit network (MEN) is a Ras-like signaling cascade that effects the transition from M phase to G1 during the cell division cycle in budding yeast. MEN activation is tightly regulated. It occurs during anaphase and is coupled to mitotic spindle position by the spindle position checkpoint (SPoC). Bfa1 is a key component of the SPoC and functions as part of a two-component GAP complex along with Bub2 The GAP activity of Bfa1-Bub2 keeps the MEN GTPase Tem1 inactive in cells with mispositioned spindles, thereby preventing inappropriate mitotic exit and preserving genome integrity. Interestingly, a GAP-independent role for Bfa1 in mitotic exit regulation has been previously identified. However the nature of this Bub2-independent role and its biological significance are not understood. Here we show that Bfa1 also activates the MEN by promoting the localization of Tem1 primarily to the daughter spindle pole body (dSPB). We demonstrate that the overexpression of BFA1 is lethal due to defects in Tem1 localization, which is required for its activity. In addition, our studies demonstrate a Tem1-independent role for Bfa1 in promoting proper cytokinesis. Cells lacking TEM1, in which the essential mitotic exit function is bypassed, exhibit cytokinesis defects. These defects are suppressed by the overexpression of BFA1 We conclude that Bfa1 functions to both inhibit and activate late mitotic events.


Asunto(s)
Proteínas del Citoesqueleto/fisiología , Mitosis/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Proteínas de Ciclo Celular/fisiología , Proteínas de Unión al GTP Monoméricas/fisiología , Proteínas Tirosina Fosfatasas/fisiología
4.
Mol Biol Cell ; 27(25): 3991-4001, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27798238

RESUMEN

In budding yeast, alignment of the anaphase spindle along the mother-bud axis is crucial for maintaining genome integrity. If the anaphase spindle becomes misaligned in the mother cell compartment, cells arrest in anaphase because the mitotic exit network (MEN), an essential Ras-like GTPase signaling cascade, is inhibited by the spindle position checkpoint (SPoC). Distinct localization patterns of MEN and SPoC components mediate MEN inhibition. Most components of the MEN localize to spindle pole bodies. If the spindle becomes mispositioned in the mother cell compartment, cells arrest in anaphase due to inhibition of the MEN by the mother cell-restricted SPoC kinase Kin4. Here we show that a bud-localized activating signal is necessary for full MEN activation. We identify Lte1 as this signal and show that Lte1 activates the MEN in at least two ways. It inhibits small amounts of Kin4 that are present in the bud via its central domain. An additional MEN-activating function of Lte1 is mediated by its N- and C-terminal GEF domains, which, we propose, directly activate the MEN GTPase Tem1. We conclude that control of the MEN by spindle position is exerted by both negative and positive regulatory elements that control the pathway's GTPase activity.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Anafase , Ciclo Celular/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/fisiología , Mitosis/genética , Mitosis/fisiología , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Transducción de Señal , Huso Acromático , Cuerpos Polares del Huso/metabolismo
5.
Nat Cell Biol ; 12(10): 954-62, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20852627

RESUMEN

In the Saccharomyces cerevisiae pheromone-response pathway, the transcription factor Ste12 is inhibited by two mitogen-activated protein (MAP)-kinase-responsive regulators, Dig1 and Dig2. These two related proteins bind to distinct regions of Ste12 but are redundant in their inhibition of Ste12-dependent gene expression. Here we describe three functions for Dig1 that are non-redundant with those of Dig2. First, the removal of Dig1 results in a specific increase in intrinsic and extrinsic noise in the transcriptional outputs of the mating pathway. Second, in dig1Δ cells, Ste12 relocalizes from the nucleoplasmic distribution seen in wild-type cells into discrete subnuclear foci. Third, genome-wide insertional chromatin immunoprecipitation studies revealed that Ste12-dependent genes have increased interchromosomal interactions in dig1Δ cells. These findings suggest that the regulation of gene expression through long-range gene interactions, a widely observed phenomenon, comes at the cost of increased noise. Consequently, cells may have evolved mechanisms to suppress noise by controlling these interactions.


Asunto(s)
Cromosomas Fúngicos/metabolismo , Regulación Fúngica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
6.
Cell Cycle ; 4(7): 940-6, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15917658

RESUMEN

Lte1, a protein important for exit from mitosis, localizes to the bud cortex as soon as the bud forms and remains there until cells exit from mitosis. Ras, the Rho GTPase Cdc42 and its effector the protein kinase Cla4 are required for Lte1's association with the bud cortex. Here we investigate how Ras, and the Cdc42 effector Cla4 regulate the localization of Lte1. We find that Ras2 and Lte1 associate in stages of the cell cycle when Lte1 is phosphorylated and associated with the bud cortex and that this association requires CLA4. Additionally, RAS1 and RAS2 are required for CLA4-dependent Lte1 phosphorylation. Our findings suggest that Cla4-dependent phosphorylation promotes the initial association of Lte1 with Ras at the bud cortex and that Ras is required to stabilize phosphorylated forms of Lte1 at the bud cortex. Our results also raise the interesting possibility that the localization of Lte1 affects the protein's ability to promote mitotic exit.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas ras/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Adenilil Ciclasas/metabolismo , Anafase , Proteínas de Ciclo Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Fosforilación , Unión Proteica , Transporte de Proteínas , Proteínas Tirosina Fosfatasas/metabolismo , Fase S , Saccharomyces cerevisiae/metabolismo , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae
7.
Curr Opin Cell Biol ; 16(1): 41-8, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15037303

RESUMEN

Establishing the temporal order of mitotic events is critical to ensure that each daughter cell receives a complete DNA complement. The spatial co-ordination of the cytokinetic ring site with the axis of chromosome segregation is likewise crucial. Recent studies in fungi indicate that regulators of chromosome segregation also participate in promoting mitotic exit and that the proteins that initiate mitotic exit, in turn, additionally regulate cytokinesis. These findings suggest that late mitotic events are coupled by employing one pathway to control multiple events. The regulatory mechanisms that ensure the spatial co-ordination of the mitotic spindle apparatus with the division site have also been elucidated recently in the asymmetrically dividing budding yeast. Interestingly, the spatial co-ordination of late mitotic events seems also to be important in higher eukaryotes.


Asunto(s)
Mitosis , Animales , Segregación Cromosómica , Dineínas/fisiología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo
8.
Curr Biol ; 12(24): 2098-110, 2002 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-12498684

RESUMEN

BACKGROUND: The putative guanine nucleotide exchange factor Lte1 plays an essential role in promoting exit from mitosis at low temperatures. Lte1 is thought to activate a Ras-like signaling cascade, the mitotic exit network (MEN). MEN promotes the release of the protein phosphatase Cdc14 from the nucleolus during anaphase, and this release is a prerequisite for exit from mitosis. Lte1 is present throughout the cell during G1 but is sequestered in the bud during S phase and mitosis by an unknown mechanism. RESULTS: We show that anchorage of Lte1 in the bud requires septins, the cell polarity determinants Cdc42 and Cla4, and Kel1. Lte1 physically associates with Kel1 and requires Kel1 for its localization in the bud, suggesting a role for Kel1 in anchoring Lte1 at the bud cortex. Our data further implicate the PAK-like protein kinase Cla4 in controlling Lte1 phosphorylation and localization. CLA4 is required for Lte1 phosphorylation and bud localization. Furthermore, when overexpressed, CLA4 induces Lte1 phosphorylation and localization to regions of polarized growth. Finally, we show that Cdc14, directly or indirectly, controls Lte1 dephosphorylation and delocalization from the bud during exit from mitosis. CONCLUSION: Restriction of Lte1 to the bud cortex depends on the cortical proteins Cdc42 and Kel1 and the septin ring. Cla4 and Cdc14 promote and demote Lte1 localization at and from the bud cortex, respectively, suggesting not only that the phosphorylation status of Lte1 controls its localization but also indicating that Cla4 and Cdc14 are key regulators of the spatial asymmetry of Lte1.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Actinas/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Proteínas de Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Polaridad Celular/efectos de los fármacos , Citoplasma/metabolismo , Proteínas del Citoesqueleto/efectos de los fármacos , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/genética , Microtúbulos/metabolismo , Mitosis , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Proteínas Tirosina Fosfatasas/genética , Proteínas/genética , Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética , Tiazoles/farmacología , Tiazolidinas , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/genética , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA