Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
NPJ Precis Oncol ; 7(1): 95, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723227

RESUMEN

Multiple myeloma (MM) is accompanied by alterations to the normal plasma cell (PC) proteome, leading to changes to the tumor microenvironment and disease progression. There is a great need for understanding the consequences that lead to MM progression and for the discovery of new biomarkers that can aid clinical diagnostics and serve as targets for therapeutics. This study demonstrates the applicability of utilizing the single-cell high-definition liquid biopsy assay (HDSCA) and imaging mass cytometry to characterize the proteomic profile of myeloma. In our study, we analyzed ~87,000 cells from seven patient samples (bone marrow and peripheral blood) across the myeloma disease spectrum and utilized our multiplexed panel to characterize the expression of clinical markers for PC classification, additional potential therapeutic targets, and the tumor microenvironment cells. Our analysis showed BCMA, ICAM3 (CD50), CD221, and CS1 (SLAMF7) as the most abundantly expressed markers on PCs across all myeloma stages, with BCMA, ICAM3, and CD221 having significantly higher expression levels on disease versus precursor PCs. Additionally, we identify significantly elevated levels of expression for CD74, MUM1, CD229, CD44, IGLL5, Cyclin D1, UBA52, and CD317 on PCs from overt disease conditions compared to those from precursor states.

2.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362214

RESUMEN

B-cell maturation antigen (BCMA), a key regulator of B-cell proliferation and survival, is highly expressed in almost all cases of plasma cell neoplasms and B-lymphoproliferative malignancies. BCMA is a robust biomarker of plasma cells and a therapeutic target with substantial clinical significance. However, the expression of BCMA in circulating tumor cells of patients with hematological malignancies has not been validated for the detection of circulating plasma and B cells. The application of BCMA as a biomarker in single-cell detection and profiling of circulating tumor cells in patients' blood could enable early disease profiling and therapy response monitoring. Here, we report the development and validation of a slide-based immunofluorescence assay (i.e., CD138, BCMA, CD45, DAPI) for enrichment-free detection, quantification, and morphogenomic characterization of BCMA-expressing cells in patients (N = 9) with plasma cell neoplasms. Varying morphological subtypes of circulating BCMA-expressing cells were detected across the CD138(+/-) and CD45(+/-) compartments, representing candidate clonotypic post-germinal center B cells, plasmablasts, and both normal and malignant plasma cells. Genomic analysis by single-cell sequencing and correlation to clinical FISH cytogenetics provides validation, with data showing that patients across the different neoplastic states carry both normal and altered BCMA-expressing cells. Furthermore, altered cells harbor cytogenetic events detected by clinical FISH. The reported enrichment-free liquid biopsy approach has potential applications as a single-cell methodology for the early detection of BCMA+ B-lymphoid malignancies and in monitoring therapy response for patients undergoing anti-BCMA treatments.


Asunto(s)
Mieloma Múltiple , Células Neoplásicas Circulantes , Plasmacitoma , Humanos , Antígeno de Maduración de Linfocitos B/metabolismo , Mieloma Múltiple/patología , Células Plasmáticas/metabolismo
3.
Curr Oncol ; 29(5): 2954-2972, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35621632

RESUMEN

Multiple myeloma is an incurable malignancy that initiates from a bone marrow resident clonal plasma cell and acquires successive mutational changes and genomic alterations, eventually resulting in tumor burden accumulation and end-organ damage. It has been recently recognized that myeloma secondary genomic events result in extensive sub-clonal heterogeneity both in localized bone marrow areas and circulating peripheral blood plasma cells. Rare genomic subclones, including myeloma initiating cells, could be the drivers of disease progression and recurrence. Additionally, evaluation of rare myeloma cells in blood for disease monitoring has numerous advantages over invasive bone marrow biopsies. To this end, an unbiased method for detecting rare cells and delineating their genomic makeup enables disease detection and monitoring in conditions with low abundant cancer cells. In this study, we applied an enrichment-free four-plex (CD138, CD56, CD45, DAPI) immunofluorescence assay and single-cell DNA sequencing for morphogenomic characterization of plasma cells to detect and delineate common and rare plasma cells and discriminate between normal and malignant plasma cells in paired blood and bone marrow aspirates from five patients with newly diagnosed myeloma (N = 4) and monoclonal gammopathy of undetermined significance (n = 1). Morphological analysis confirms CD138+CD56+ cells in the peripheral blood carry genomic alterations that are clonally identical to those in the bone marrow. A subset of altered CD138+CD56- cells are also found in the peripheral blood consistent with the known variability in CD56 expression as a marker of plasma cell malignancy. Bone marrow tumor clinical cytogenetics is highly correlated with the single-cell copy number alterations of the liquid biopsy rare cells. A subset of rare cells harbors genetic alterations not detected by standard clinical diagnostic methods of random localized bone marrow biopsies. This enrichment-free morphogenomic approach detects and characterizes rare cell populations derived from the liquid biopsies that are consistent with clinical diagnosis and have the potential to extend our understanding of subclonality at the single-cell level in this disease. Assay validation in larger patient cohorts has the potential to offer liquid biopsy for disease monitoring with similar or improved disease detection as traditional blind bone marrow biopsies.


Asunto(s)
Mieloma Múltiple , Médula Ósea/metabolismo , Médula Ósea/patología , Células Clonales/metabolismo , Células Clonales/patología , Progresión de la Enfermedad , Humanos , Mieloma Múltiple/genética , Células Plasmáticas/metabolismo , Células Plasmáticas/patología
4.
Cancers (Basel) ; 13(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801459

RESUMEN

Liquid biopsies hold potential as minimally invasive sources of tumor biomarkers for diagnosis, prognosis, therapy prediction or disease monitoring. We present an approach for parallel single-object identification of circulating tumor cells (CTCs) and tumor-derived large extracellular vesicles (LEVs) based on automated high-resolution immunofluorescence followed by downstream multiplexed protein profiling. Identification of LEVs >6 µm in size and CTC enumeration was highly correlated, with LEVs being 1.9 times as frequent as CTCs, and additional LEVs were identified in 73% of CTC-negative liquid biopsy samples from metastatic castrate resistant prostate cancer. Imaging mass cytometry (IMC) revealed that 49% of cytokeratin (CK)-positive LEVs and CTCs were EpCAM-negative, while frequently carrying prostate cancer tumor markers including AR, PSA, and PSMA. HSPD1 was shown to be a specific biomarker for tumor derived circulating cells and LEVs. CTCs and LEVs could be discriminated based on size, morphology, DNA load and protein score but not by protein signatures. Protein profiles were overall heterogeneous, and clusters could be identified across object classes. Parallel analysis of CTCs and LEVs confers increased sensitivity for liquid biopsies and expanded specificity with downstream characterization. Combined, it raises the possibility of a more comprehensive assessment of the disease state for precise diagnosis and monitoring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...