Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36346388

RESUMEN

The asymmetric summation of kinetically distinct glutamate inputs across the dendrites of retinal 'starburst' amacrine cells is one of the several mechanisms that have been proposed to underlie their direction-selective properties, but experimentally verifying input kinetics has been a challenge. Here, we used two-photon glutamate sensor (iGluSnFR) imaging to directly measure the input kinetics across individual starburst dendrites. We found that signals measured from proximal dendrites were relatively sustained compared to those measured from distal dendrites. These differences were observed across a range of stimulus sizes and appeared to be shaped mainly by excitatory rather than inhibitory network interactions. Temporal deconvolution analysis suggests that the steady-state vesicle release rate was ~3 times larger at proximal sites compared to distal sites. Using a connectomics-inspired computational model, we demonstrate that input kinetics play an important role in shaping direction selectivity at low stimulus velocities. Taken together, these results provide direct support for the 'space-time wiring' model for direction selectivity.


Asunto(s)
Células Amacrinas , Ácido Glutámico , Dendritas , Cinética , Fotones
2.
Cell Rep ; 38(8): 110410, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35196487

RESUMEN

In the retina, ON starburst amacrine cells (SACs) play a crucial role in the direction-selective circuit, but the sources of inhibition that shape their response properties remain unclear. Previous studies demonstrate that ∼95% of their inhibitory synapses are GABAergic, yet we find that the light-evoked inhibitory currents measured in SACs are predominantly glycinergic. Glycinergic inhibition is extremely slow, relying on non-canonical glycine receptors containing α4 subunits, and is driven by both the ON and OFF retinal pathways. These attributes enable glycine inputs to summate and effectively control the output gain of SACs, expanding the range over which they compute direction. Serial electron microscopic reconstructions reveal three specific types of ON and OFF narrow-field amacrine cells as the presumptive sources of glycinergic inhibition. Together, these results establish an unexpected role for specific glycinergic amacrine cells in the retinal computation of stimulus direction by SACs.


Asunto(s)
Células Amacrinas , Sinapsis , Células Amacrinas/fisiología , Glicina/metabolismo , Retina/metabolismo , Sinapsis/metabolismo
4.
Nat Commun ; 12(1): 1374, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33654091

RESUMEN

In many parts of the central nervous system, including the retina, it is unclear whether cholinergic transmission is mediated by rapid, point-to-point synaptic mechanisms, or slower, broad-scale 'non-synaptic' mechanisms. Here, we characterized the ultrastructural features of cholinergic connections between direction-selective starburst amacrine cells and downstream ganglion cells in an existing serial electron microscopy data set, as well as their functional properties using electrophysiology and two-photon acetylcholine (ACh) imaging. Correlative results demonstrate that a 'tripartite' structure facilitates a 'multi-directed' form of transmission, in which ACh released from a single vesicle rapidly (~1 ms) co-activates receptors expressed in multiple neurons located within ~1 µm of the release site. Cholinergic signals are direction-selective at a local, but not global scale, and facilitate the transfer of information from starburst to ganglion cell dendrites. These results suggest a distinct operational framework for cholinergic signaling that bears the hallmarks of synaptic and non-synaptic forms of transmission.


Asunto(s)
Acetilcolina/metabolismo , Sistema Nervioso Central/fisiología , Transmisión Sináptica/fisiología , Células Amacrinas/fisiología , Células Amacrinas/ultraestructura , Animales , Dendritas/fisiología , Dendritas/ultraestructura , Cinética , Ratones Endogámicos C57BL , Fotones , Células Ganglionares de la Retina/ultraestructura
5.
J Clin Invest ; 130(4): 2054-2068, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32175920

RESUMEN

Inherited retinal degenerations (IRDs) are characterized by the progressive loss of photoreceptors and represent one of the most prevalent causes of blindness among working-age populations. Cyclic nucleotide dysregulation is a common pathological feature linked to numerous forms of IRD, yet the precise mechanisms through which this contributes to photoreceptor death remain elusive. Here we demonstrate that cAMP induced upregulation of the dependence receptor neogenin in the retina. Neogenin levels were also elevated in both human and murine degenerating photoreceptors. We found that overexpressing neogenin in mouse photoreceptors was sufficient to induce cell death, whereas silencing neogenin in degenerating murine photoreceptors promoted survival, thus identifying a pro-death signal in IRDs. A possible treatment strategy is modeled whereby peptide neutralization of neogenin in Rd1, Rd10, and Rho P23H-knockin mice promotes rod and cone survival and rescues visual function as measured by light-evoked retinal ganglion cell recordings, scotopic/photopic electroretinogram recordings, and visual acuity tests. These results expose neogenin as a critical link between cAMP and photoreceptor death, and identify a druggable target for the treatment of retinal degeneration.


Asunto(s)
Proteínas de la Membrana/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneración Retiniana/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Línea Celular Tumoral , AMP Cíclico/genética , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Células HEK293 , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Células Fotorreceptoras de Vertebrados/patología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Células Ganglionares de la Retina/patología
6.
Elife ; 92020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32096758

RESUMEN

Recent studies indicate that the precise timing and location of excitation and inhibition (E/I) within active dendritic trees can significantly impact neuronal function. How synaptic inputs are functionally organized at the subcellular level in intact circuits remains unclear. To address this issue, we took advantage of the retinal direction-selective ganglion cell circuit, where directionally tuned inhibition is known to shape non-directional excitatory signals. We combined two-photon calcium imaging with genetic, pharmacological, and single-cell ablation methods to examine the extent to which inhibition 'vetoes' excitation at the level of individual dendrites of direction-selective ganglion cells. We demonstrate that inhibition shapes direction selectivity independently within small dendritic segments (<10µm) with remarkable accuracy. The data suggest that the parallel processing schemes proposed for direction encoding could be more fine-grained than previously envisioned.


Asunto(s)
Dendritas/fisiología , Inhibición Neural/fisiología , Células Ganglionares de la Retina/fisiología , Potenciales de Acción , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Elife ; 82019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30714905

RESUMEN

In the mammalian retina, direction-selectivity is thought to originate in the dendrites of GABAergic/cholinergic starburst amacrine cells, where it is first observed. However, here we demonstrate that direction selectivity in downstream ganglion cells remains remarkably unaffected when starburst dendrites are rendered non-directional, using a novel strategy combining a conditional GABAA α2 receptor knockout mouse with optogenetics. We show that temporal asymmetries between excitation/inhibition, arising from the differential connectivity patterns of starburst cholinergic and GABAergic synapses to ganglion cells, form the basis for a parallel mechanism generating direction selectivity. We further demonstrate that these distinct mechanisms work in a coordinated way to refine direction selectivity as the stimulus crosses the ganglion cell's receptive field. Thus, precise spatiotemporal patterns of inhibition and excitation that determine directional responses in ganglion cells are shaped by two 'core' mechanisms, both arising from distinct specializations of the starburst network.


Asunto(s)
Células Amacrinas/fisiología , Optogenética , Receptores de GABA-A/genética , Retina/fisiología , Acetilcolina/metabolismo , Células Amacrinas/metabolismo , Animales , Dendritas/genética , Dendritas/fisiología , Ratones , Ratones Noqueados , Receptores de GABA-A/metabolismo , Células Ganglionares de la Retina/fisiología , Sinapsis/genética , Sinapsis/fisiología , Vías Visuales
8.
J Physiol ; 596(16): 3709-3724, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29758086

RESUMEN

KEY POINTS: Starburst amacrine cells release GABA and ACh. This study explores the coordinated function of starburst-mediated cholinergic excitation and GABAergic inhibition to bistratified retinal ganglion cells, predominantly direction-selective ganglion cells (DSGCs). In rat retina, under our recording conditions, starbursts were found to provide the major excitatory drive to a sub-population of ganglion cells whose dendrites co-stratify with starburst dendrites (putative DSGCs). In mouse retina, recordings from genetically identified DSGCs at physiological temperatures reveal that ACh inputs dominate the response to small spot-high contrast light stimuli, with preferential addition of bipolar cell input shifting the balance towards glutamate for larger spot stimuli In addition, starbursts also appear to gate glutamatergic excitation to DSGCs by postsynaptic and possibly presynaptic inhibitory processes ABSTRACT: Starburst amacrine cells release both GABA and ACh, allowing them to simultaneously mediate inhibition and excitation. However, the precise pre- and postsynaptic targets for ACh and GABA remain under intense investigation. Most previous studies have focused on starburst-mediated postsynaptic GABAergic inhibition and its role in the formation of directional selectivity in ganglion cells. However, the significance of postsynaptic cholinergic excitation is only beginning to be appreciated. Here, we found that light-evoked responses measured in bi-stratified rat ganglion cells with dendrites that co-fasciculate with ON and OFF starburst dendrites (putative direction-selective ganglion cells, DSGCs) were abolished by the application of nicotinic receptor antagonists, suggesting ACh could act as the primary source of excitation. Recording from genetically labelled DSGCs in mouse retina at physiological temperatures revealed that cholinergic synaptic inputs dominated the excitation for high contrast stimuli only when the size of the stimulus was small. Canonical glutamatergic inputs mediated by bipolar cells were prominent when GABA/glycine receptors were blocked or when larger spot stimuli were utilized. In mouse DSGCs, bipolar cell excitation could also be unmasked through the activation of mGluR2,3 receptors, which we show suppresses starburst output, suggesting that GABA from starbursts serves to inhibit bipolar cell signals in DSGCs. Taken together, these results suggest that starbursts amplify excitatory signals traversing the retina, endowing DSGCs with the ability to encode fine spatial information without compromising their ability to encode direction.


Asunto(s)
Acetilcolina/farmacología , Células Amacrinas/fisiología , Ácido Glutámico/metabolismo , Células Ganglionares de la Retina/fisiología , Sinapsis/fisiología , Vías Visuales/fisiología , Células Amacrinas/citología , Células Amacrinas/efectos de los fármacos , Animales , Células Cultivadas , Agonistas Colinérgicos/farmacología , Ratones , Inhibición Neural , Estimulación Luminosa , Ratas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/efectos de los fármacos , Sinapsis/efectos de los fármacos , Transmisión Sináptica , Vías Visuales/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo
9.
Neuron ; 96(5): 1099-1111.e3, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29107522

RESUMEN

Retinal direction-selective ganglion cells (DSGCs) have the remarkable ability to encode motion over a wide range of contrasts, relying on well-coordinated excitation and inhibition (E/I). E/I is orchestrated by a diverse set of glutamatergic bipolar cells that drive DSGCs directly, as well as indirectly through feedforward GABAergic/cholinergic signals mediated by starburst amacrine cells. Determining how direction-selective responses are generated across varied stimulus conditions requires understanding how glutamate, acetylcholine, and GABA signals are precisely coordinated. Here, we use a combination of paired patch-clamp recordings, serial EM, and large-scale multi-electrode array recordings to show that a single high-sensitivity source of glutamate is processed differentially by starbursts via AMPA receptors and DSGCs via NMDA receptors. We further demonstrate how this novel synaptic arrangement enables DSGCs to encode direction robustly near threshold contrasts. Together, these results reveal a space-efficient synaptic circuit model for direction computations, in which "silent" NMDA receptors play critical roles.


Asunto(s)
Percepción de Movimiento/fisiología , N-Metilaspartato/fisiología , Retina/fisiología , Sinapsis/fisiología , Acetilcolina/fisiología , Animales , Ácido Glutámico/fisiología , Ratones , Técnicas de Placa-Clamp , Receptores AMPA/fisiología , Retina/ultraestructura , Células Bipolares de la Retina/fisiología , Células Bipolares de la Retina/ultraestructura , Células Ganglionares de la Retina/fisiología , Células Ganglionares de la Retina/ultraestructura , Transducción de Señal/fisiología , Sinapsis/ultraestructura , Ácido gamma-Aminobutírico/fisiología
10.
Neuron ; 90(6): 1243-1256, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27238865

RESUMEN

A surprisingly large number of neurons throughout the brain are endowed with the ability to co-release both a fast excitatory and inhibitory transmitter. The computational benefits of dual transmitter release, however, remain poorly understood. Here, we address the role of co-transmission of acetylcholine (ACh) and GABA from starburst amacrine cells (SACs) to direction-selective ganglion cells (DSGCs). Using a combination of pharmacology, optogenetics, and linear regression methods, we estimated the spatiotemporal profiles of GABA, ACh, and glutamate receptor-mediated synaptic activity in DSGCs evoked by motion. We found that ACh initiates responses to motion in natural scenes or under low-contrast conditions. In contrast, classical glutamatergic pathways play a secondary role, amplifying cholinergic responses via NMDA receptor activation. Furthermore, under these conditions, the network of SACs differentially transmits ACh and GABA to DSGCs in a directional manner. Thus, mixed transmission plays a central role in shaping directional responses of DSGCs.


Asunto(s)
Acetilcolina/fisiología , Células Amacrinas/fisiología , Células Ganglionares de la Retina/fisiología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Ácido Glutámico/fisiología , Ratones , Movimiento (Física) , Inhibición Neural/fisiología
11.
PLoS One ; 10(6): e0129133, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26053500

RESUMEN

One general categorization of retinal ganglion cells is to segregate them into tonically or phasically responding neurons, each conveying discrete aspects of the visual scene. Although best identified in the output signals of the retina, this distinction is initiated at the first synapse: between photoreceptors and the dendrites of bipolar cells. In this study we found that the output synapses of bipolar cells also contribute to separate these pathways. Both transient and sustained ganglion cells can produce maintained spike activity, but bipolar cell glutamate release exhibits a divergence that corresponds to the response characteristics of the ganglion cells. Comparing light intensity coding in the sustained and transient ON pathways revealed that they shared the intensity spectrum. The transient pathway had greater sensitivity but smaller dynamic range, and switched from intensity coding to event detection at light levels where sustained pathway sensitivity began to rise. The distinctive properties of the sustained pathway depended upon inhibition and shifted toward those of the transient pathway in the absence of inhibition. The transient system was comparatively unaffected by the loss of inhibition and this was due to the concomitant activation of perisynaptic NMDA receptors. Overall, the properties of bipolar cell dendritic and axon terminals both contribute to the formation of key aspects of the sustained/transient dichotomy normally associated with ganglion cells.


Asunto(s)
Glutamatos/metabolismo , Células Bipolares de la Retina/fisiología , Sinapsis/metabolismo , Transmisión Sináptica , Animales , Neurotransmisores/metabolismo , Neurotransmisores/farmacología , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciales Sinápticos , Urodelos
12.
Proc Natl Acad Sci U S A ; 112(13): E1559-68, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25775587

RESUMEN

As with other retinal cell types, retinal ganglion cells (RGCs) arise from multipotent retinal progenitor cells (RPCs), and their formation is regulated by a hierarchical gene-regulatory network (GRN). Within this GRN, three transcription factors--atonal homolog 7 (Atoh7), POU domain, class 4, transcription factor 2 (Pou4f2), and insulin gene enhancer protein 1 (Isl1)--occupy key node positions at two different stages of RGC development. Atoh7 is upstream and is required for RPCs to gain competence for an RGC fate, whereas Pou4f2 and Isl1 are downstream and regulate RGC differentiation. However, the genetic and molecular basis for the specification of the RGC fate, a key step in RGC development, remains unclear. Here we report that ectopic expression of Pou4f2 and Isl1 in the Atoh7-null retina using a binary knockin-transgenic system is sufficient for the specification of the RGC fate. The RGCs thus formed are largely normal in gene expression, survive to postnatal stages, and are physiologically functional. Our results indicate that Pou4f2 and Isl1 compose a minimally sufficient regulatory core for the RGC fate. We further conclude that during development a core group of limited transcription factors, including Pou4f2 and Isl1, function downstream of Atoh7 to determine the RGC fate and initiate RGC differentiation.


Asunto(s)
Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Células Ganglionares de la Retina/metabolismo , Factor de Transcripción Brn-3B/metabolismo , Factores de Transcripción/metabolismo , Alelos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclo Celular , Diferenciación Celular , Sistema Nervioso Central/metabolismo , Electrofisiología , Femenino , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Retina/embriología , Retina/metabolismo , Células Madre/citología
13.
Neuron ; 86(1): 276-91, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25801705

RESUMEN

Local and global forms of inhibition controlling directionally selective ganglion cells (DSGCs) in the mammalian retina are well documented. It is established that local inhibition arising from GABAergic starburst amacrine cells (SACs) strongly contributes to direction selectivity. Here, we demonstrate that increasing ambient illumination leads to the recruitment of GABAergic wide-field amacrine cells (WACs) endowing the DS circuit with an additional feature: size selectivity. Using a combination of electrophysiology, pharmacology, and light/electron microscopy, we show that WACs predominantly contact presynaptic bipolar cells, which drive direct excitation and feedforward inhibition (through SACs) to DSGCs, thus maintaining the appropriate balance of inhibition/excitation required for generating DS. This circuit arrangement permits high-fidelity direction coding over a range of ambient light levels, over which size selectivity is adjusted. Together, these results provide novel insights into the anatomical and functional arrangement of multiple inhibitory interneurons within a single computational module in the retina.


Asunto(s)
Células Amacrinas/fisiología , Red Nerviosa/fisiología , Retina/citología , Percepción del Tamaño/fisiología , Percepción Espacial/fisiología , Células Amacrinas/efectos de los fármacos , Células Amacrinas/ultraestructura , Anestésicos Locales/farmacología , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Antagonistas del GABA/farmacología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Luz , Ratones , Ratones Transgénicos , Red Nerviosa/ultraestructura , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Ácidos Fosfínicos/farmacología , Estimulación Luminosa , Picrotoxina/farmacología , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Piridinas/farmacología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/fisiología , Sinapsis/ultraestructura , Tetrodotoxina/farmacología , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Campos Visuales/efectos de los fármacos
14.
J Neurophysiol ; 112(1): 193-203, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24717344

RESUMEN

Glutamate release at bipolar to ganglion cell synapses activates NMDA and AMPA/kainic acid (KA) ionotropic glutamate receptors. Their relative strength determines the output signals of the retina. We found that this balance is tightly regulated by presynaptic inhibition that preferentially suppresses NMDA receptor (NMDAR) activation. In transient ON-OFF neurons, block of GABA and glycine feedback enhanced total NMDAR charge by 35-fold in the ON response and 9-fold in the OFF compared with a 1.7-fold enhancement of AMPA/KA receptors. Blocking only glycine receptors enhanced the NMDAR excitatory postsynaptic current 10-fold in the ON and 2-fold in the OFF pathway. Blocking GABA(A) or GABA(C) receptors (GABA(C)Rs or GABA(A)Rs) produced small changes in total NMDAR charge. When both GABA(A)Rs and GABA(C)Rs were blocked, the total NMDAR charge increased ninefold in the ON and fivefold in the OFF pathway. This exposed a strong GABA(C)R feedback to bipolar cells that was suppressed by serial amacrine cell synapses mediated by GABA(A)Rs. The results indicate that NMDAR currents are large but latent, held in check by dual GABA and glycine presynaptic inhibition. One example of this controlled NMDAR activation is the cross talk between ON and OFF pathways. Blocking the ON pathway increased NMDAR relative strength in the OFF pathway. Stimulus prolongation similarly increased the NMDAR relative strength in the OFF response. This NMDAR enhancement was produced by a diminution in GABA and glycine feedback. Thus the retinal network recruits NMDAR pathways through presynaptic disinhibition.


Asunto(s)
Potenciales Postsinápticos Excitadores , Receptores de N-Metil-D-Aspartato/metabolismo , Células Bipolares de la Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Células Amacrinas/metabolismo , Células Amacrinas/fisiología , Ambystoma , Animales , Retroalimentación Fisiológica , Agonistas del GABA/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Glicina/farmacología , Receptores de Glicina/antagonistas & inhibidores , Células Bipolares de la Retina/fisiología , Células Ganglionares de la Retina/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/fisiología , Ácido gamma-Aminobutírico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...