Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38337915

RESUMEN

Cassava breeding faces obstacles due to late flowering and poor flower and seed set. The acceleration of breeding processes and the reduction in each cycle's duration hinge upon efficiently conducting crosses to yield ample progeny for subsequent cycles. Our primary objective was to identify methods that provide tools for cassava breeding programs, enabling them to consistently and rapidly generate offspring from a wide array of genotypes. In greenhouse trials, we examined the effects of the anti-ethylene silver thiosulfate (STS) and the cytokinin benzyladenine (BA). STS, administered via petiole infusion, and BA, applied as an apical spray, combined with the pruning of young branches, significantly augmented the number of flowers. Controls produced no flowers, whereas treatments with pruning plus either BA or STS alone produced an average maximum of 86 flowers per plant, and the combination of pruning, BA and STS yielded 168 flowers per plant. While STS had its primary effect on flower numbers, BA increased the fraction of female flowers from less than 20% to ≥87%, thus increasing the number of progeny from desired parents. Through field studies, we devised an optimal protocol that maintained acceptable levels of phytodamage ratings while substantially increasing seed production per plant compared to untreated plants. This protocol involves adjusting the dosage and timing of treatments to accommodate genotypic variations. As a result, cassava breeding programs can effectively leverage a diverse range of germplasm to develop cultivars with the desired traits.

2.
Front Plant Sci ; 14: 1172056, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284728

RESUMEN

Cassava is a tropical crop that provides daily carbohydrates to more than 800 million people. New cassava cultivars with improved yield, disease resistance, and food quality are critical to end hunger and reduce poverty in the tropics. However, the progress of new cultivar development has been dragged down by difficulties obtaining flowers from desired parental plants to enable designed crosses. Inducing early flowering and increasing seed production are crucial to improving the efficiency of developing farmer-preferred cultivars. In the present study, we used breeding progenitors to evaluate the effectiveness of flower-inducing technology, including photoperiod extension, pruning, and plant growth regulators. Photoperiod extension significantly reduced the time to flowering in all 150 breeding progenitors, especially late-flowering progenitors which were reduced from 6-7 months to 3-4 months. Seed production was increased by using the combination of pruning and plant growth regulators. Combining photoperiod extension with pruning and the PGR 6-benzyladenine (synthetic cytokinin) produced significantly more fruits and seeds than only photoperiod extension and pruning. Another growth regulator, silver thiosulfate, commonly used to block the action of ethylene, did not show a significant effect on fruit or seed production when combined with pruning. The present study validated a protocol for flower induction in cassava breeding programs and discussed factors to consider in implementing the technology. By inducing early flowering and increasing seed production, the protocol helped move one step further for speed breeding in cassava.

3.
BMC Plant Biol ; 23(1): 335, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353746

RESUMEN

BACKGROUND: Cassava (Manihot esculenta Crantz) is staple food and major source of calories for over 500 million people in sub-Saharan Africa. The crop is also a source of income for smallholder farmers, and has increasing potential for industrial utilization. However, breeding efforts to match the increasing demand of cassava are impeded by its inability to flower, delayed or unsynchronized flowering, low proportion of female flowers and high fruit abortions. To overcome these sexual reproductive bottlenecks, this study investigated the effectiveness of using red lights to extend the photoperiod (RLE), as a gateway to enhancing flowering and fruit set under field conditions. MATERIALS AND METHODS: Panels of cassava genotypes, with non- or late and early flowering response, 10 in each case, were subjected to RLE from dusk to dawn. RLE was further evaluated at low (LL), medium (ML) and high (HL) red light intensities, at ~ ≤ 0.5; 1.0 and 1.5PFD (Photon Flux Density) in µmol m-2 s-1 respectively. Additionally, the effect of a cytokinin and anti-ethylene as plant growth regulators (PGR) and pruning under RLE treatment were examined. RESULTS: RLE stimulated earlier flower initiation in all genotypes, by up to 2 months in the late-flowering genotypes. Height and number of nodes at first branching, particularly in the late-flowering genotypes were also reduced, by over 50%. Number and proportion of pistillate flowers more than doubled, while number of fruits and seeds also increased. Number of branching levels during the crop season also increased by about three. Earlier flowering in many genotypes was most elicited at LL to ML intensities. Additive effects on flower numbers were detected between RLE, PGR and pruning applications. PGR and pruning treatments further increased number and proportion of pistillate flowers and fruits. Plants subjected to PGR and pruning, developed bisexual flowers and exhibited feminization of staminate flowers. Pruning at first branching resulted in higher pistillate flower induction than at second branching. CONCLUSIONS: These results indicate that RLE improves flowering in cassava, and its effectiveness is enhanced when PGR and pruning are applied. Thus, deployment of these technologies in breeding programs could significantly enhance cassava hybridizations and thus cassava breeding efficiency and impact.


Asunto(s)
Manihot , Reguladores del Crecimiento de las Plantas , Frutas/genética , Manihot/genética , Fotoperiodo , Fitomejoramiento , Flores/genética
4.
Front Plant Sci ; 13: 973206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186068

RESUMEN

Cassava is a staple food crop in the tropics, and is of particular importance in Africa. Recent development of genomic selection technology have improved the speed of cassava breeding; however, cassava flower initiation and development remains a bottleneck. The objectives of the current studies were to elucidate the effect of photoperiod, temperature and their interactions on the time of flowering and flower development in controlled environments, and to use RNA-sequencing to identify transcriptome expression underlying these environmental responses. Compared to a normal tropical day-length of 12 h, increasing the photoperiod by 4 h or decreasing the air temperature from 34/31 to 22°/19°C (day/night) substantially hastened the time to flowering. For both photoperiod and temperature, the environment most favorable for flowering was opposite the one for storage root harvest index. There was a pronounced treatment interaction: at warm day-time temperatures, percent flowering was low, and photoperiod had little effect. In contrast, at cooler temperatures, percent flowering increased, and long-day (LD) photoperiod had a strong effect in hastening flowering. In response to temperature, many differentially expressed genes in the sugar, phase-change, and flowering-time-integrator pathways had expression/flowering patterns in the same direction as in Arabidopsis (positive or negative) even though the effect of temperature on flowering operates in the reverse direction in cassava compared to Arabidopsis. Three trehalose-6-phosphate-synthase-1 (TPS1) genes and four members of the SPL gene family had significantly increased expression at cool temperature, suggesting sugar signaling roles in flower induction. In response to LD photoperiod, regulatory genes were expressed as in Arabidopsis and other LD flowering plants. Several hormone-related genes were expressed in response to both photoperiod and temperature. In summary, these findings provide insight on photoperiod and temperature responses and underlying gene expression that may assist breeding programs to manipulate flowering for more rapid crop improvement.

5.
PLoS One ; 16(7): e0253555, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34288936

RESUMEN

Cassava is an important food security crop in tropical regions of the world. Cassava improvement by breeding is limited by its delayed and poor production of flowers, such that cassava flowering under field conditions indirectly lengthens the breeding cycle. By studying genotype and environment interaction under two Nigerian field conditions (Ubiaja and Ibadan) and three controlled temperature conditions (22°C/18°C, 28/24°C and 34/30°C (day/night)), we found that while early flowering genotypes flowered at similar times and rates under all growing conditions (unfavorable and favorable field and controlled-temperature environments), late flowering genotypes were environmentally sensitive such that they were substantially delayed in unfavorable environments. On the basis of nodes-to-flower, flowering of late genotypes approached the flowering time of early flowering genotypes under relatively cool Ubiaja field conditions and in growth chambers at 22°C, whereas warmer temperatures elicited a delaying effect. Analysis of transcriptomes from leaves of field and controlled-temperature environments revealed that conditions which promote early flowering in cassava have low expression of the flowering repressor gene TEMPRANILLO 1 (TEM1), before and after flowering. Expression data of field plants showed that the balance between flower stimulatory and inhibitory signaling appeared to correlate with flowering time across the environments and genotypes.


Asunto(s)
Flores/crecimiento & desarrollo , Interacción Gen-Ambiente , Manihot/genética , ARN de Planta/genética , Transcriptoma , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genotipo , Manihot/crecimiento & desarrollo , Nigeria , ARN de Planta/biosíntesis , Temperatura , Factores de Tiempo
6.
Front Plant Sci ; 12: 666266, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122486

RESUMEN

Cassava, a tropical storage-root crop, is a major source of food security for millions in the tropics. Cassava breeding, however, is hindered by the poor development of flowers and a low ratio of female flowers to male flowers. To advance the understanding of the mechanistic factors regulating cassava flowering, combinations of plant growth regulators (PGRs) and pruning treatments were examined for their effectiveness in improving flower production and fruit set in field conditions. Pruning the fork-type branches, which arise at the shoot apex immediately below newly formed inflorescences, stimulated inflorescence and floral development. The anti-ethylene PGR silver thiosulfate (STS) also increased flower abundance. Both pruning and STS increased flower numbers while having minimal influence on sex ratios. In contrast, the cytokinin benzyladenine (BA) feminized flowers without increasing flower abundance. Combining pruning and STS treatments led to an additive increase in flower abundance; with the addition of BA, over 80% of flowers were females. This three-way treatment combination of pruning+STS+BA also led to an increase in fruit number. Transcriptomic analysis of gene expression in tissues of the apical region and developing inflorescence revealed that the enhancement of flower development by STS+BA was accompanied by downregulation of several genes associated with repression of flowering, including homologs of TEMPRANILLO1 (TEM1), GA receptor GID1b, and ABA signaling genes ABI1 and PP2CA. We conclude that flower-enhancing treatments with pruning, STS, and BA create widespread changes in the network of hormone signaling and regulatory factors beyond ethylene and cytokinin.

7.
Plants (Basel) ; 10(5)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33925964

RESUMEN

Potato is adapted to cool environments, and there is concern that its performance may be diminished considerably due to global warming and more frequent episodes of heat stress. Our objectives were to determine the response of potato plants to elevated CO2 (700 µmol/mol) and high temperature (35/25 °C) at tuber initiation and tuber bulking, and to elucidate effects on sink developmental processes. Potato plants were grown in controlled environments with treatments at: Tuber initiation (TI), during the first two weeks after initiating short-day photoperiods, and Tuber bulking (TB). At TI, and 25 °C, elevated CO2 increased tuber growth rate, while leaves and stems were not affected. Whole-plant dry matter accumulation rate, was inhibited by high temperature about twice as much at TI than at TB. Elevated CO2 partially ameliorated high temperature inhibition of sink organs. At TI, with 25 °C, elevated CO2 primarily affected tuber cell proliferation. In contrast, tuber cell volume and endoreduplication were unaffected. These findings indicate that the TI stage and cell division is particularly responsive to elevated CO2 and high temperature stress, supporting the view that attention should be paid to the timing of high-temperature stress episodes with respect to this stage.

8.
Front Plant Sci ; 11: 1107, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793264

RESUMEN

Flowering in cassava is closely linked with branching. Early-flowering genotypes branch low and abundantly. Although farmers prefer late flowering genotypes because of their erect plant architecture, their usefulness as progenitors in breeding is limited by their low seed production. In general, the first inflorescence aborts in cassava. Preventing this abortion would result in early production of seeds and make cassava breeding more efficient. The objective of this study was to assess if pruning young branches prevents the abortion of first inflorescences and promotes early fruit and seed set. Four genotypes with early, late, very late, and no flowering habits were grown under an extended photoperiod (EP) or normal dark night conditions (DN). Additional treatments included pruning young branches at the first or second flowering event and spraying (or not) benzyladenine (BA) after pruning. One genotype failed to flower and was not considered further. For the remaining genotypes, EP proved crucial to induce an earlier flowering, which is a pre-requisite for pruning. Total production of seeds in EP plots was 2,971 versus 150 in DN plots. For plants grown under EP, the average number of seeds per plant without pruning was 3.88, whereas those pruned produced 17.60 seeds per plant. Pruning at the first branching event led to higher number of seeds per plant (26.25) than pruning at the second flowering event (8.95). In general, applying BA was beneficial (38.52 and 13.98 seeds/plant with or without spraying it, respectively). The best combination of treatments was different for each genotype. Pruning young branches and applying BA in the first flowering event not only prevented the abortion of inflorescences but also induced the feminization of male flowers into hermaphrodite or female-only flowers. The procedures suggested from this study (combining EP, pruning young branches, and spraying BA), allowed the production of a high number of seeds from erect cassava genotypes in a short period. The implementation of these procedures will improve the breeding efficiency in cassava.

9.
Plant Growth Regul ; 90(3): 441-453, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32214568

RESUMEN

Cassava, which produces edible starchy roots, is an important staple food for hundreds of millions of people in the tropics. Breeding of cassava is hampered by its poor flower production, flower abortion, and lack of reproductive prolificacy. The current work determined that ethylene signalling affects floral development in cassava and that the anti-ethylene plant growth regulator silver thiosulfate (STS) mitigates the effects of ethylene on flower development. STS did not affect the timing of flower initiation, but improved early inflorescence and flower development as well as flower longevity such that flower numbers were increased. STS did not affect shoot and storage root growth. Studies of silver accumulation and treatment localization support the hypothesis that the beneficial effects of STS are confined to tissues of the shoot apex. The most effective timing of application was before inflorescence appearance extending to post-flower appearance. Based on this work a recommended protocol for STS use was developed. This work has the potential to improve methods for enhancing cassava flower development in breeding nurseries and thereby synchronize flowering of desired parents and enable the production of abundant progeny of desired crosses.

10.
New Phytol ; 224(2): 675-688, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31364171

RESUMEN

Signal coordination in response to changes in water availability remains unclear, as does the role of embolism events in signaling drought stress. Sunflowers were exposed to two drought treatments of varying intensity while simultaneously monitoring changes in stomatal conductance, acoustic emissions (AE), turgor pressure, surface-level electrical potential, organ-level water potential and leaf abscisic acid (ABA) concentration. Leaf, stem and root xylem vulnerability to embolism were measured with the single vessel injection technique. In both drought treatments, it was found that AE events and turgor changes preceded the onset of stomatal closure, whereas electrical surface potentials shifted concurrently with stomatal closure. Leaf-level ABA concentration did not change until after stomata were closed. Roots and petioles were equally vulnerable to drought stress based on the single vessel injection technique. However, anatomical analysis of the xylem indicated that the increased AE events were not a result of xylem embolism formation. Additionally, roots and stems never reached a xylem pressure threshold that would initiate runaway embolism throughout the entire experiment. It is concluded that stomatal closure was not embolism-driven, but, rather, that onset of stomatal closure was most closely correlated with the hydraulic signal from changes in leaf turgor.


Asunto(s)
Helianthus/fisiología , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Transducción de Señal , Agua/metabolismo , Ácido Abscísico , Sequías , Raíces de Plantas/fisiología , Tallos de la Planta/fisiología , Estrés Fisiológico
11.
Plant Reprod ; 32(2): 181-191, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30543044

RESUMEN

Cassava is a starch-storing root crop that is an important source of dietary energy in tropical regions of the world. Genetic improvement of cassava by breeding is hindered by late flowering and sparse flower production in lines that are needed as parents. To advance understanding of regulatory mechanisms in cassava, this work sought to identify and characterize homologs of the FLOWERING LOCUS T (FT) gene. Ten members of the phosphatidylethanolamine-binding protein gene family, to which FT belongs, were obtained from the cassava genome database. Phylogenetic and sequence analysis of these proteins was used to identify two putative FT homologs which had amino acid sequences at key positions in accordance with those predicted for functional FTs. Expression of these ten genes was determined in mature leaves, immature leaves, flower buds, fibrous roots, storage roots and stem. The FT transcripts were expressed in mature leaves, as expected for their possible role in leaf-to-apical meristem signaling. In growth chamber studies, plants flowered earlier in long-day photoperiod than in short-day photoperiod. Expression studies indicated that while MeFT1 was expressed in leaves without a clear-cut photoperiod response, MeFT2 was expressed in a photoperiod-dependent manner, consistent with its involvement in photoperiodic control of flowering. In growth chambers that subjected plants to a range of temperatures from 22 to 34 °C, flowering was delayed by warmer temperatures although MeFT1 and MeFT2 expression declined in only one genotype, indicating other factors regulate this response. The earliest flowering genotype, IBA980002, had high levels of MeFT1 and MeFT2 expression, suggesting that both homologs contribute to earliness of this genotype.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Manihot/genética , Proteínas de Unión a Fosfatidiletanolamina/genética , Flores/genética , Flores/fisiología , Genotipo , Manihot/fisiología , Meristema/genética , Meristema/fisiología , Familia de Multigenes , Fotoperiodo , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Temperatura
12.
PLoS One ; 12(7): e0181460, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28753668

RESUMEN

Cassava is a tropical storage-root crop that serves as a worldwide source of staple food for over 800 million people. Flowering is one of the most important breeding challenges in cassava because in most lines flowering is late and non-synchronized, and flower production is sparse. The FLOWERING LOCUS T (FT) gene is pivotal for floral induction in all examined angiosperms. The objective of the current work was to determine the potential roles of the FT signaling system in cassava. The Arabidopsis thaliana FT gene (atFT) was transformed into the cassava cultivar 60444 through Agrobacterium-mediated transformation and was found to be overexpressed constitutively. FT overexpression hastened flower initiation and associated fork-type branching, indicating that cassava has the necessary signaling factors to interact with and respond to the atFT gene product. In addition, overexpression stimulated lateral branching, increased the prolificacy of flower production and extended the longevity of flower development. While FT homologs in some plant species stimulate development of vegetative storage organs, atFT inhibited storage-root development and decreased root harvest index in cassava. These findings collectively contribute to our understanding of flower development in cassava and have the potential for applications in breeding.


Asunto(s)
Arabidopsis/metabolismo , Flores/metabolismo , Manihot/crecimiento & desarrollo , Manihot/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Manihot/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética
13.
Nat Biotechnol ; 34(5): 562-70, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27088722

RESUMEN

Cassava (Manihot esculenta) provides calories and nutrition for more than half a billion people. It was domesticated by native Amazonian peoples through cultivation of the wild progenitor M. esculenta ssp. flabellifolia and is now grown in tropical regions worldwide. Here we provide a high-quality genome assembly for cassava with improved contiguity, linkage, and completeness; almost 97% of genes are anchored to chromosomes. We find that paleotetraploidy in cassava is shared with the related rubber tree Hevea, providing a resource for comparative studies. We also sequence a global collection of 58 Manihot accessions, including cultivated and wild cassava accessions and related species such as Ceará or India rubber (M. glaziovii), and genotype 268 African cassava varieties. We find widespread interspecific admixture, and detect the genetic signature of past cassava breeding programs. As a clonally propagated crop, cassava is especially vulnerable to pathogens and abiotic stresses. This genomic resource will inform future genome-enabled breeding efforts to improve this staple crop.


Asunto(s)
ADN de Plantas/genética , Hibridación Genética/genética , Manihot/clasificación , Manihot/genética , Fitomejoramiento/métodos , Análisis de Secuencia de ADN/métodos , Mapeo Cromosómico/métodos , Secuencia Conservada/genética , Variación Genética , Genoma de Planta/genética , Especificidad de la Especie
14.
G3 (Bethesda) ; 6(4): 865-79, 2016 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-26818078

RESUMEN

The application of high-throughput plant phenotyping (HTPP) to continuously study plant populations under relevant growing conditions creates the possibility to more efficiently dissect the genetic basis of dynamic adaptive traits. Toward this end, we employed a field-based HTPP system that deployed sets of sensors to simultaneously measure canopy temperature, reflectance, and height on a cotton (Gossypium hirsutum L.) recombinant inbred line mapping population. The evaluation trials were conducted under well-watered and water-limited conditions in a replicated field experiment at a hot, arid location in central Arizona, with trait measurements taken at different times on multiple days across 2010-2012. Canopy temperature, normalized difference vegetation index (NDVI), height, and leaf area index (LAI) displayed moderate-to-high broad-sense heritabilities, as well as varied interactions among genotypes with water regime and time of day. Distinct temporal patterns of quantitative trait loci (QTL) expression were mostly observed for canopy temperature and NDVI, and varied across plant developmental stages. In addition, the strength of correlation between HTPP canopy traits and agronomic traits, such as lint yield, displayed a time-dependent relationship. We also found that the genomic position of some QTL controlling HTPP canopy traits were shared with those of QTL identified for agronomic and physiological traits. This work demonstrates the novel use of a field-based HTPP system to study the genetic basis of stress-adaptive traits in cotton, and these results have the potential to facilitate the development of stress-resilient cotton cultivars.


Asunto(s)
Gossypium/genética , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Estrés Fisiológico/genética , Algoritmos , Mapeo Cromosómico , Análisis por Conglomerados , Estudios de Asociación Genética , Ligamiento Genético , Modelos Genéticos , Modelos Estadísticos , Fenotipo
15.
Front Physiol ; 4: 93, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23717282

RESUMEN

Cassava is an important crop in Africa, Asia, Latin America, and the Caribbean. Cassava can be produced adequately in drought conditions making it the ideal food security crop in marginal environments. Although cassava can tolerate drought stress, it can be genetically improved to enhance productivity in such environments. Drought adaptation studies in over three decades in cassava have identified relevant mechanisms which have been explored in conventional breeding. Drought is a quantitative trait and its multigenic nature makes it very challenging to effectively manipulate and combine genes in breeding for rapid genetic gain and selection process. Cassava has a long growth cycle of 12-18 months which invariably contributes to a long breeding scheme for the crop. Modern breeding using advances in genomics and improved genotyping, is facilitating the dissection and genetic analysis of complex traits including drought tolerance, thus helping to better elucidate and understand the genetic basis of such traits. A beneficial goal of new innovative breeding strategies is to shorten the breeding cycle using minimized, efficient or fast phenotyping protocols. While high throughput genotyping have been achieved, this is rarely the case for phenotyping for drought adaptation. Some of the storage root phenotyping in cassava are often done very late in the evaluation cycle making selection process very slow. This paper highlights some modified traits suitable for early-growth phase phenotyping that may be used to reduce drought phenotyping cycle in cassava. Such modified traits can significantly complement the high throughput genotyping procedures to fast track breeding of improved drought tolerant varieties. The need for metabolite profiling, improved phenomics to take advantage of next generation sequencing technologies and high throughput phenotyping are basic steps for future direction to improve genetic gain and maximize speed for drought tolerance breeding.

16.
Front Physiol ; 3: 180, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22675308

RESUMEN

Investigators now have a wide range of analytical tools to use in measuring metabolites, proteins and transcripts in plant tissues. These tools have the potential to assist genetic studies that seek to phenotype genetic lines for heritable traits that contribute to drought tolerance. To be useful for crop breeding, hundreds or thousands of genetic lines must be assessed. This review considers the utility of assaying certain constituents with roles in drought tolerance for phenotyping genotypes. Abscisic acid (ABA), organic and inorganic osmolytes, compatible solutes, and late embryogenesis abundant proteins, are considered. Confounding effects that require appropriate tissue and timing specificity, and the need for high-throughput and analytical cost efficiency are discussed. With future advances in analytical methods and the value of analyzing constituents that provide information on the underlying mechanisms of drought tolerance, these approaches are expected to contribute to development crops with improved drought tolerance.

17.
J Exp Bot ; 62(2): 701-16, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21084430

RESUMEN

In maize, water stress at flowering causes loss of kernel set and productivity. While changes in the levels of sugars and abscisic acid (ABA) are thought to play a role in this stress response, the mechanistic basis and genes involved are not known. A candidate gene approach was used with association mapping to identify loci involved in accumulation of carbohydrates and ABA metabolites during stress. A panel of single nucleotide polymorphisms (SNPs) in genes from these metabolic pathways and in genes for reproductive development and stress response was used to genotype 350 tropical and subtropical maize inbred lines that were well watered or water stressed at flowering. Pre-pollination ears, silks, and leaves were analysed for sugars, starch, proline, ABA, ABA-glucose ester, and phaseic acid. ABA and sugar levels in silks and ears were negatively correlated with their growth. Association mapping with 1229 SNPs in 540 candidate genes identified an SNP in the maize homologue of the Arabidopsis MADS-box gene, PISTILLATA, which was significantly associated with phaseic acid in ears of well-watered plants, and an SNP in pyruvate dehydrogenase kinase, a key regulator of carbon flux into respiration, that was associated with silk sugar concentration. An SNP in an aldehyde oxidase gene was significantly associated with ABA levels in silks of water-stressed plants. Given the short range over which decay of linkage disequilibrium occurs in maize, the results indicate that allelic variation in these genes affects ABA and carbohydrate metabolism in floral tissues during drought.


Asunto(s)
Ácido Abscísico/metabolismo , Flores/metabolismo , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Agua/metabolismo , Zea mays/genética , Mapeo Cromosómico , Sequías , Flores/genética , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/metabolismo , Zea mays/clasificación , Zea mays/metabolismo
18.
Plant Physiol ; 154(1): 173-86, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20668057

RESUMEN

Developmental responses associated with end-of-day far-red light (EOD-FR) signaling were investigated in maize (Zea mays subspecies mays) seedlings. A survey of genetically diverse inbreds of temperate and tropical/semitropical origins, together with teosinte (Zea mays subspecies parviglumis) and a modern hybrid, revealed distinct elongation responses. A mesocotyl elongation response to the EOD-FR treatment was largely absent in the tropical/semitropical lines, but both hybrid and temperate inbred responses were of the same magnitude as in teosinte, suggesting that EOD-FR-mediated mesocotyl responses were not lost during the domestication or breeding process. The genetic architecture underlying seedling responses to EOD-FR was investigated using the intermated B73 x Mo17 mapping population. Among the different quantitative trait loci identified, two were consistently detected for elongation and responsiveness under EOD-FR, but none were associated with known light signaling loci. The central role of phytochromes in mediating EOD-FR responses was shown using a phytochromeB1 phytochromeB2 (phyB1 phyB2) mutant series. Unlike the coleoptile and first leaf sheath, EOD-FR-mediated elongation of the mesocotyl appears predominantly controlled by gibberellin. EOD-FR also reduced abscisic acid (ABA) levels in the mesocotyl for both the wild type and phyB1 phyB2 double mutants, suggesting a FR-mediated but PHYB-independent control of ABA accumulation. EOD-FR elongation responses were attenuated in both the wild type and phyB1 phyB2 double mutants when a chilling stress was applied during the dark period, concomitant with an increase in ABA levels. We present a model for the EOD-FR response that integrates light and hormonal control of seedling elongation.


Asunto(s)
Luz , Plantones/genética , Plantones/fisiología , Zea mays/genética , Zea mays/fisiología , Ácido Abscísico/metabolismo , Frío , Oscuridad , Giberelinas/farmacología , Endogamia , Modelos Biológicos , Mutación/genética , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Especificidad de Órganos/efectos de la radiación , Fitocromo B/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Sitios de Carácter Cuantitativo/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Semillas/efectos de los fármacos , Semillas/genética , Semillas/efectos de la radiación , Factores de Tiempo , Zea mays/crecimiento & desarrollo , Zea mays/efectos de la radiación
19.
Ann Bot ; 105(1): 155-63, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19700447

RESUMEN

BACKGROUND: Wetlands are species-rich habitats performing valuable ecosystem services such as flood protection, water quality enhancement, food chain support and carbon sequestration. Worldwide, wetlands have been drained to convert them into agricultural land or industrial and urban areas. A realistic estimate is that 50 % of the world's wetlands have been lost. SCOPE: This paper reviews the relationship between wetlands and agriculture with the aim to identify the successes and failures of agricultural use in different types of wetlands, with reference to short-term and long-term benefits and issues of sustainability. It also addresses a number of recent developments which will lead to pressure to reclaim and destroy natural wetlands, i.e. the continuous need for higher production to feed an increasing world population and the increasing cultivation of energy crops. Finally, attention is paid to the development of more flood-tolerant crop cultivars. CONCLUSIONS: Agriculture has been carried out in several types of (former) wetlands for millennia, with crop fields on river floodplain soils and rice fields as major examples. However, intensive agricultural use of drained/reclaimed peatlands has been shown to lead to major problems because of the oxidation and subsidence of the peat soil. This does not only lead to severe carbon dioxide emissions, but also results in low-lying land which needs to be protected against flooding. Developments in South-East Asia, where vast areas of tropical peatlands are being converted into oil palm plantations, are of great concern in this respect. Although more flood-tolerant cultivars of commercial crop species are being developed, these are certainly not suitable for cultivation in wetlands with prolonged flooding periods, but rather will survive relatively short periods of waterlogging in normally improved agricultural soils. From a sustainability perspective, reclamation of peatlands for agriculture should be strongly discouraged. The opportunities for agriculture in naturally functioning floodplains should be further investigated. The development and use of crop cultivars with an even stronger flood tolerance could form part of the sustainable use of such floodplain systems. Extensive use of wetlands without drastic reclamation measures and without fertilizer and pesticides might result in combinations of food production with other wetland services, with biodiversity remaining more or less intact. There is a need for research by agronomists and environmental scientists to optimize such solutions.


Asunto(s)
Agricultura/tendencias , Humedales , Arecaceae , Biodiversidad , Conservación de los Recursos Naturales , Países Bajos , Oryza , Aceite de Palma , Aceites de Plantas
20.
Plant Mol Biol ; 58(4): 447-64, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16021332

RESUMEN

Auxin, which has been implicated in multiple biochemical and physiological processes, elicits three classes of genes (Aux/IAAs, SAURs and GH3s) that have been characterized by their early or primary responses to the hormone. A new GH3-like gene was identified from a suppressive subtraction hybridization (SSH) library of pungent pepper (Capsicum chinense L.) cDNAs. This gene, CcGH3, possessed several auxin- and ethylene-inducible elements in the putative promoter region. Upon further investigation, CcGH3 was shown to be auxin-inducible in shoots, flower buds, sepals, petals and most notably ripening and mature pericarp and placenta. Paradoxically, this gene was expressed in fruit when auxin levels were decreasing, consistent with ethylene-inducibility. Further experiments demonstrated that CcGH3 was induced by endogenous ethylene, and that transcript accumulation was inhibited by 1-methylcyclopropene, an inhibitor of ethylene perception. When over-expressed in tomato, CcGH3 hastened ripening of ethylene-treated fruit. These results implicate CcGH3 as a factor in auxin and ethylene regulation of fruit ripening and suggest that it may be a point of intersection in the signaling by these two hormones.


Asunto(s)
Capsicum/genética , Etilenos/farmacología , Frutas/genética , Ácidos Indolacéticos/farmacología , Proteínas de Plantas/genética , Arabidopsis/genética , Northern Blotting , Capsicum/metabolismo , Ciclopropanos/farmacología , ADN Complementario/química , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Frutas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucuronidasa/genética , Glucuronidasa/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/genética , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico/métodos , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Elementos de Respuesta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Análisis de Secuencia de ADN , Sitio de Iniciación de la Transcripción , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA